Cargando…
Artificial intelligence and machine learning in clinical development: a translational perspective
Future of clinical development is on the verge of a major transformation due to convergence of large new digital data sources, computing power to identify clinically meaningful patterns in the data using efficient artificial intelligence and machine-learning algorithms, and regulators embracing this...
Autores principales: | Shah, Pratik, Kendall, Francis, Khozin, Sean, Goosen, Ryan, Hu, Jianying, Laramie, Jason, Ringel, Michael, Schork, Nicholas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6659652/ https://www.ncbi.nlm.nih.gov/pubmed/31372505 http://dx.doi.org/10.1038/s41746-019-0148-3 |
Ejemplares similares
-
Promise and Provisos of Artificial Intelligence and Machine Learning in Healthcare
por: Bhardwaj, Anish
Publicado: (2022) -
Evidence synthesis, digital scribes, and translational challenges for artificial intelligence in healthcare
por: Coiera, Enrico, et al.
Publicado: (2022) -
Artificial Intelligence Discusses the Role of Artificial Intelligence in Translational Medicine: A JACC: Basic to Translational Science Interview With ChatGPT
por: Mann, Douglas L.
Publicado: (2023) -
Evaluating artificial intelligence in medicine: phases of clinical research
por: Park, Yoonyoung, et al.
Publicado: (2020) -
Artificial intelligence in oncology: current applications and future perspectives
por: Luchini, Claudio, et al.
Publicado: (2021)