Cargando…
Adding an anaerobic step can rapidly inhibit sludge bulking in SBR reactor
Activated sludge from wastewater treatment plants was seeded into a sequencing batch reactor (SBR) in which synthetic wastewater was used as the influent. The sludge was bulked by decreasing the concentration of dissolved oxygen (DO). By adding a 30 min step of anaerobic stirring after the water inf...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6659659/ https://www.ncbi.nlm.nih.gov/pubmed/31350413 http://dx.doi.org/10.1038/s41598-019-47304-3 |
Sumario: | Activated sludge from wastewater treatment plants was seeded into a sequencing batch reactor (SBR) in which synthetic wastewater was used as the influent. The sludge was bulked by decreasing the concentration of dissolved oxygen (DO). By adding a 30 min step of anaerobic stirring after the water inflow, the sludge bulking was rapidly inhibited after 10 running cycles, and the sludge volume index (SVI) decreased from 222 to 74 mL·g(−1). The results of high-throughput sequencing showed that the relative abundance of bacteria Thiothrix, bacteria norank_o_Sphingobacteriales and fungi Trichosporon was increased by 6.3, 4.3 and 81.2%, after initial SBR stages, but these bacteria were inhibited by the addition of an anaerobic step, as their relative abundances decreased by 0.7, 0.8 and 14.7%, respectively. The proliferation of Thiothrix, norank_o_Sphingobacteriales and Trichosporon was the primary reason for the observed sludge bulking in the reactor. After the anaerobic step was added, the sludge extracellular polymeric substances (EPS) concentration was increased from 84.4 to 104.0 mg·(gMLSS)(−1) (grams of mixed liquor suspended solids). Thus, the addition of an anaerobic step can inhibit the growth of filamentous bacteria, increasing the sludge EPS concentration and promoting the precipitation of activated sludge. |
---|