Cargando…

Methylmercury exposure, genetic variation in metabolic enzymes, and the risk of glioma

Methylmercury (MeHg) is an environmental neurotoxin with human exposure mainly from dietary intake of contaminated fish. Exposure to MeHg has been implicated in neurological damage, but research on its role in cancers, specifically glioma, is limited. In a glioma case-control study, we examined asso...

Descripción completa

Detalles Bibliográficos
Autores principales: Creed, Jordan H., Peeri, Noah C., Anic, Gabriella M., Thompson, Reid C., Olson, Jeffrey J., LaRocca, Renato V., Chowdhary, Sajeel A., Brockman, John D., Gerke, Travis A., Nabors, Louis B., Egan, Kathleen M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6659774/
https://www.ncbi.nlm.nih.gov/pubmed/31350461
http://dx.doi.org/10.1038/s41598-019-47284-4
Descripción
Sumario:Methylmercury (MeHg) is an environmental neurotoxin with human exposure mainly from dietary intake of contaminated fish. Exposure to MeHg has been implicated in neurological damage, but research on its role in cancers, specifically glioma, is limited. In a glioma case-control study, we examined associations between toenail mercury (Hg) and glioma risk. We also examined genetic polymorphisms in 13 genes related to MeHg metabolism for association with glioma risk; genetic associations were also studied in the UK Biobank cohort. Median toenail Hg in cases and controls, respectively, was 0.066 μg/g and 0.069 μg/g (interquartile range (IQR): 0.032–0.161 and 0.031–0.150 μg/g). Toenail Hg was not found to be significantly associated with glioma risk (Odds Ratio: 1.02; 95% Confidence Interval: 0.91, 1.14; p = 0.70 in analysis for ordinal trend with increasing quartile of toenail MeHg). No genetic variant was statistically significant in both of the studies; one variant, rs11859163 (MMP2) had a combined p-value of 0.02 though it was no longer significant after adjustment for multiple testing (Bonferroni corrected p = 1). This study does not support the hypothesis that exposure to MeHg plays a role in the development of glioma at levels of exposure found in this study population.