Cargando…

Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation

In the alcoholic fermentation process, Saccharomyces cerevisiae strains present differences in their nitrogen consumption profiles, these phenotypic outcomes have complex genetic and molecular architectures. In this sense, variations in nitrogen signaling pathways regulated by TORC1 represent one of...

Descripción completa

Detalles Bibliográficos
Autores principales: Molinet, Jennifer, Cubillos, Francisco A., Salinas, Francisco, Liti, Gianni, Martínez, Claudio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660096/
https://www.ncbi.nlm.nih.gov/pubmed/31348805
http://dx.doi.org/10.1371/journal.pone.0220515
_version_ 1783439258754744320
author Molinet, Jennifer
Cubillos, Francisco A.
Salinas, Francisco
Liti, Gianni
Martínez, Claudio
author_facet Molinet, Jennifer
Cubillos, Francisco A.
Salinas, Francisco
Liti, Gianni
Martínez, Claudio
author_sort Molinet, Jennifer
collection PubMed
description In the alcoholic fermentation process, Saccharomyces cerevisiae strains present differences in their nitrogen consumption profiles, these phenotypic outcomes have complex genetic and molecular architectures. In this sense, variations in nitrogen signaling pathways regulated by TORC1 represent one of the main sources of phenotypic diversity in nitrogen consumption. This emphasizes the possible roles that allelic variants from the TORC1 pathway have in the nitrogen consumption differences observed in yeast during the alcoholic fermentation. Here, we studied the allelic diversity in the TORC1 pathway across four yeast strains and determined how these polymorphisms directly impact nitrogen consumption during alcoholic fermentation. Using a reciprocal hemizygosity approach combined with phenotyping under fermentative conditions, we found that allelic variants of GTR1, TOR2, SIT4, SAP185, EAP1, NPR1 and SCH9 underlie differences in the ammonium and amino acids consumption phenotypes. Among these, GTR1 alleles from the Wine/European and West African genetic backgrounds showed the greatest effects on ammonium and amino acid consumption, respectively. Furthermore, we identified allelic variants of SAP185, TOR2, SCH9 and NPR1 from an oak isolate that increased the amino acid consumption preference over ammonium; representing putative candidates coming from a non-domesticated strain that could be used for genetic improvement programs. In conclusion, our results demonstrated that a large number of allelic variants within the TORC1 pathway significantly impacts on regulatory mechanisms of nitrogen assimilation during alcoholic fermentation.
format Online
Article
Text
id pubmed-6660096
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-66600962019-08-07 Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation Molinet, Jennifer Cubillos, Francisco A. Salinas, Francisco Liti, Gianni Martínez, Claudio PLoS One Research Article In the alcoholic fermentation process, Saccharomyces cerevisiae strains present differences in their nitrogen consumption profiles, these phenotypic outcomes have complex genetic and molecular architectures. In this sense, variations in nitrogen signaling pathways regulated by TORC1 represent one of the main sources of phenotypic diversity in nitrogen consumption. This emphasizes the possible roles that allelic variants from the TORC1 pathway have in the nitrogen consumption differences observed in yeast during the alcoholic fermentation. Here, we studied the allelic diversity in the TORC1 pathway across four yeast strains and determined how these polymorphisms directly impact nitrogen consumption during alcoholic fermentation. Using a reciprocal hemizygosity approach combined with phenotyping under fermentative conditions, we found that allelic variants of GTR1, TOR2, SIT4, SAP185, EAP1, NPR1 and SCH9 underlie differences in the ammonium and amino acids consumption phenotypes. Among these, GTR1 alleles from the Wine/European and West African genetic backgrounds showed the greatest effects on ammonium and amino acid consumption, respectively. Furthermore, we identified allelic variants of SAP185, TOR2, SCH9 and NPR1 from an oak isolate that increased the amino acid consumption preference over ammonium; representing putative candidates coming from a non-domesticated strain that could be used for genetic improvement programs. In conclusion, our results demonstrated that a large number of allelic variants within the TORC1 pathway significantly impacts on regulatory mechanisms of nitrogen assimilation during alcoholic fermentation. Public Library of Science 2019-07-26 /pmc/articles/PMC6660096/ /pubmed/31348805 http://dx.doi.org/10.1371/journal.pone.0220515 Text en © 2019 Molinet et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Molinet, Jennifer
Cubillos, Francisco A.
Salinas, Francisco
Liti, Gianni
Martínez, Claudio
Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation
title Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation
title_full Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation
title_fullStr Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation
title_full_unstemmed Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation
title_short Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation
title_sort genetic variants of torc1 signaling pathway affect nitrogen consumption in saccharomyces cerevisiae during alcoholic fermentation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660096/
https://www.ncbi.nlm.nih.gov/pubmed/31348805
http://dx.doi.org/10.1371/journal.pone.0220515
work_keys_str_mv AT molinetjennifer geneticvariantsoftorc1signalingpathwayaffectnitrogenconsumptioninsaccharomycescerevisiaeduringalcoholicfermentation
AT cubillosfranciscoa geneticvariantsoftorc1signalingpathwayaffectnitrogenconsumptioninsaccharomycescerevisiaeduringalcoholicfermentation
AT salinasfrancisco geneticvariantsoftorc1signalingpathwayaffectnitrogenconsumptioninsaccharomycescerevisiaeduringalcoholicfermentation
AT litigianni geneticvariantsoftorc1signalingpathwayaffectnitrogenconsumptioninsaccharomycescerevisiaeduringalcoholicfermentation
AT martinezclaudio geneticvariantsoftorc1signalingpathwayaffectnitrogenconsumptioninsaccharomycescerevisiaeduringalcoholicfermentation