Cargando…
Quantification of Biomolecular Dynamics Inside Real and Synthetic Nuclear Pore Complexes Using Time-Resolved Atomic Force Microscopy
[Image: see text] Over the past decades, atomic force microscopy (AFM) has emerged as an increasingly powerful tool to study the dynamics of biomolecules at nanometer length scales. However, the more stochastic the nature of such biomolecular dynamics, the harder it becomes to distinguish them from...
Autores principales: | Stanley, George J., Akpinar, Bernice, Shen, Qi, Fisher, Patrick D. Ellis, Lusk, C. Patrick, Lin, Chenxiang, Hoogenboom, Bart W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660115/ https://www.ncbi.nlm.nih.gov/pubmed/31241896 http://dx.doi.org/10.1021/acsnano.9b02424 |
Ejemplares similares
-
Atomic force microscopy reveals structural variability amongst nuclear pore complexes
por: Stanley, George J, et al.
Publicado: (2018) -
PEGylated surfaces for the study of DNA–protein interactions by atomic force microscopy
por: Akpinar, Bernice, et al.
Publicado: (2019) -
Filming Biomolecular Processes by High-Speed Atomic
Force Microscopy
por: Ando, Toshio, et al.
Publicado: (2014) -
Simulation atomic force microscopy for atomic reconstruction of biomolecular structures from resolution-limited experimental images
por: Amyot, Romain, et al.
Publicado: (2022) -
Biomolecular condensates as arbiters of biochemical reactions inside the nucleus
por: Laflamme, Guillaume, et al.
Publicado: (2020)