Cargando…

Functional Magnetic Resonance Imaging Biomarkers Predicting Cognitive Progression in Parkinson Disease: Protocol for a Prospective Longitudinal Cohort Study

BACKGROUND: Cardinal features of Parkinson disease (PD) are motor symptoms, but nonmotor features such as mild cognitive impairment (MCI) are common early in the disease process. MCI can progress and convert to dementia in advanced stages, creating significant disability and reduced quality of life....

Descripción completa

Detalles Bibliográficos
Autores principales: Hanna-Pladdy, Brenda, Gullapalli, Rao, Chen, Hegang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660119/
https://www.ncbi.nlm.nih.gov/pubmed/31033450
http://dx.doi.org/10.2196/12870
_version_ 1783439263964069888
author Hanna-Pladdy, Brenda
Gullapalli, Rao
Chen, Hegang
author_facet Hanna-Pladdy, Brenda
Gullapalli, Rao
Chen, Hegang
author_sort Hanna-Pladdy, Brenda
collection PubMed
description BACKGROUND: Cardinal features of Parkinson disease (PD) are motor symptoms, but nonmotor features such as mild cognitive impairment (MCI) are common early in the disease process. MCI can progress and convert to dementia in advanced stages, creating significant disability and reduced quality of life. The primary pathological substrate for cognitive decline in PD is unclear, and there are no reliable biomarkers predicting the risk of conversion to dementia. A subgroup of PD patients with visual hallucinations may display more rapid conversion to dementia, suggesting that regional markers of visuoperceptual dysfunction may be sensitive to pathologic density in posterior cortical regions. OBJECTIVE: The purpose of this project is to characterize PD-MCI and evaluate the utility of genetic and neuroimaging biomarkers in predicting cognitive outcomes with a prospective longitudinal study. We will evaluate whether accelerated cognitive progression may be reflected in biomarkers of early posterior cortical changes reflective of α-synuclein deposition. METHODS: We will evaluate a cohort of early-stage PD patients with the following methods to predict cognitive progression: (1) serial neuropsychological evaluations including detailed visuoperceptual functioning across 4 years; (2) genetic analysis of SNCA (α-synuclein), MAPT (microtubule-associated tau), and APOE (apolipoprotein E); (3) an event-related functional magnetic resonance imaging paradigm of object recognition memory; and (4) anatomical and regional brain activation changes (resting-state functional magnetic resonance imaging) across 4 years. RESULTS: The project received funding from the National Institutes of Health in August 2017, and data collection began in February 2018. Enrollment is ongoing, and subjects will be evaluated annually for 4 years extended across a 5-year project including data analysis and image processing. CONCLUSIONS: Cognitive, genetic, and structural and functional magnetic resonance imaging will characterize neural network changes predictive of cognitive progression in PD across 4 years. Identification of biomarkers with sensitivity for early prediction and estimation of risk for conversion to dementia in PD will pave the way for effective intervention with neuroprotective therapies during the critical stage when treatment can have the greatest impact. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/12870
format Online
Article
Text
id pubmed-6660119
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-66601192019-08-08 Functional Magnetic Resonance Imaging Biomarkers Predicting Cognitive Progression in Parkinson Disease: Protocol for a Prospective Longitudinal Cohort Study Hanna-Pladdy, Brenda Gullapalli, Rao Chen, Hegang JMIR Res Protoc Protocol BACKGROUND: Cardinal features of Parkinson disease (PD) are motor symptoms, but nonmotor features such as mild cognitive impairment (MCI) are common early in the disease process. MCI can progress and convert to dementia in advanced stages, creating significant disability and reduced quality of life. The primary pathological substrate for cognitive decline in PD is unclear, and there are no reliable biomarkers predicting the risk of conversion to dementia. A subgroup of PD patients with visual hallucinations may display more rapid conversion to dementia, suggesting that regional markers of visuoperceptual dysfunction may be sensitive to pathologic density in posterior cortical regions. OBJECTIVE: The purpose of this project is to characterize PD-MCI and evaluate the utility of genetic and neuroimaging biomarkers in predicting cognitive outcomes with a prospective longitudinal study. We will evaluate whether accelerated cognitive progression may be reflected in biomarkers of early posterior cortical changes reflective of α-synuclein deposition. METHODS: We will evaluate a cohort of early-stage PD patients with the following methods to predict cognitive progression: (1) serial neuropsychological evaluations including detailed visuoperceptual functioning across 4 years; (2) genetic analysis of SNCA (α-synuclein), MAPT (microtubule-associated tau), and APOE (apolipoprotein E); (3) an event-related functional magnetic resonance imaging paradigm of object recognition memory; and (4) anatomical and regional brain activation changes (resting-state functional magnetic resonance imaging) across 4 years. RESULTS: The project received funding from the National Institutes of Health in August 2017, and data collection began in February 2018. Enrollment is ongoing, and subjects will be evaluated annually for 4 years extended across a 5-year project including data analysis and image processing. CONCLUSIONS: Cognitive, genetic, and structural and functional magnetic resonance imaging will characterize neural network changes predictive of cognitive progression in PD across 4 years. Identification of biomarkers with sensitivity for early prediction and estimation of risk for conversion to dementia in PD will pave the way for effective intervention with neuroprotective therapies during the critical stage when treatment can have the greatest impact. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/12870 JMIR Publications 2019-04-29 /pmc/articles/PMC6660119/ /pubmed/31033450 http://dx.doi.org/10.2196/12870 Text en ©Brenda Hanna-Pladdy, Rao Gullapalli, Hegang Chen. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 29.04.2019. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Research Protocols, is properly cited. The complete bibliographic information, a link to the original publication on http://www.researchprotocols.org, as well as this copyright and license information must be included.
spellingShingle Protocol
Hanna-Pladdy, Brenda
Gullapalli, Rao
Chen, Hegang
Functional Magnetic Resonance Imaging Biomarkers Predicting Cognitive Progression in Parkinson Disease: Protocol for a Prospective Longitudinal Cohort Study
title Functional Magnetic Resonance Imaging Biomarkers Predicting Cognitive Progression in Parkinson Disease: Protocol for a Prospective Longitudinal Cohort Study
title_full Functional Magnetic Resonance Imaging Biomarkers Predicting Cognitive Progression in Parkinson Disease: Protocol for a Prospective Longitudinal Cohort Study
title_fullStr Functional Magnetic Resonance Imaging Biomarkers Predicting Cognitive Progression in Parkinson Disease: Protocol for a Prospective Longitudinal Cohort Study
title_full_unstemmed Functional Magnetic Resonance Imaging Biomarkers Predicting Cognitive Progression in Parkinson Disease: Protocol for a Prospective Longitudinal Cohort Study
title_short Functional Magnetic Resonance Imaging Biomarkers Predicting Cognitive Progression in Parkinson Disease: Protocol for a Prospective Longitudinal Cohort Study
title_sort functional magnetic resonance imaging biomarkers predicting cognitive progression in parkinson disease: protocol for a prospective longitudinal cohort study
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660119/
https://www.ncbi.nlm.nih.gov/pubmed/31033450
http://dx.doi.org/10.2196/12870
work_keys_str_mv AT hannapladdybrenda functionalmagneticresonanceimagingbiomarkerspredictingcognitiveprogressioninparkinsondiseaseprotocolforaprospectivelongitudinalcohortstudy
AT gullapallirao functionalmagneticresonanceimagingbiomarkerspredictingcognitiveprogressioninparkinsondiseaseprotocolforaprospectivelongitudinalcohortstudy
AT chenhegang functionalmagneticresonanceimagingbiomarkerspredictingcognitiveprogressioninparkinsondiseaseprotocolforaprospectivelongitudinalcohortstudy