Cargando…
Challenges to pooling models of crowding: Implications for visual mechanisms
A set of phenomena known as crowding reveal peripheral vision's vulnerability in the face of clutter. Crowding is important both because of its ubiquity, making it relevant for many real-world tasks and stimuli, and because of the window it provides onto mechanisms of visual processing. Here we...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660188/ https://www.ncbi.nlm.nih.gov/pubmed/31348486 http://dx.doi.org/10.1167/19.7.15 |
Sumario: | A set of phenomena known as crowding reveal peripheral vision's vulnerability in the face of clutter. Crowding is important both because of its ubiquity, making it relevant for many real-world tasks and stimuli, and because of the window it provides onto mechanisms of visual processing. Here we focus on models of the underlying mechanisms. This review centers on a popular class of models known as pooling models, as well as the phenomenology that appears to challenge a pooling account. Using a candidate high-dimensional pooling model, we gain intuitions about whether a pooling model suffices and reexamine the logic behind the pooling challenges. We show that pooling mechanisms can yield substitution phenomena and therefore predict better performance judging the properties of a set versus a particular item. Pooling models can also exhibit some similarity effects without requiring mechanisms that pool at multiple levels of processing, and without constraining pooling to a particular perceptual group. Moreover, we argue that other similarity effects may in part be due to noncrowding influences like cuing. Unlike low-dimensional straw-man pooling models, high-dimensional pooling preserves rich information about the stimulus, which may be sufficient to support high-level processing. To gain insights into the implications for pooling mechanisms, one needs a candidate high-dimensional pooling model and cannot rely on intuitions from low-dimensional models. Furthermore, to uncover the mechanisms of crowding, experiments need to separate encoding from decision effects. While future work must quantitatively examine all of the challenges to a high-dimensional pooling account, insights from a candidate model allow us to conclude that a high-dimensional pooling mechanism remains viable as a model of the loss of information leading to crowding. |
---|