Cargando…

Atomic-scale interface engineering of Majorana edge modes in a 2D magnet-superconductor hybrid system

Topological superconductors are predicted to harbor exotic boundary states—Majorana zero-energy modes—whose non-Abelian braiding statistics present a new paradigm for the realization of topological quantum computing. Using low-temperature scanning tunneling spectroscopy, here, we report on the direc...

Descripción completa

Detalles Bibliográficos
Autores principales: Palacio-Morales, Alexandra, Mascot, Eric, Cocklin, Sagen, Kim, Howon, Rachel, Stephan, Morr, Dirk K., Wiesendanger, Roland
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660210/
https://www.ncbi.nlm.nih.gov/pubmed/31360762
http://dx.doi.org/10.1126/sciadv.aav6600
Descripción
Sumario:Topological superconductors are predicted to harbor exotic boundary states—Majorana zero-energy modes—whose non-Abelian braiding statistics present a new paradigm for the realization of topological quantum computing. Using low-temperature scanning tunneling spectroscopy, here, we report on the direct real-space visualization of chiral Majorana edge states in a monolayer topological superconductor, a prototypical magnet-superconductor hybrid system composed of nanoscale Fe islands of monoatomic height on a Re(0001)-O(2 × 1) surface. In particular, we demonstrate that interface engineering by an atomically thin oxide layer is crucial for driving the hybrid system into a topologically nontrivial state as confirmed by theoretical calculations of the topological invariant, the Chern number.