Cargando…
Study of the antitumor mechanisms of apiole derivatives (AP-02) from Petroselinum crispum through induction of G0/G1 phase cell cycle arrest in human COLO 205 cancer cells
BACKGROUND: Apiole was isolated from the leaves of various plants and vegetables and has been demonstrated to inhibit human colon cancer cell (COLO 205 cells) growth through induction of G0/G1 cell cycle arrest and apoptotic cell death. This study further explored the antitumor effects of apiole der...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660667/ https://www.ncbi.nlm.nih.gov/pubmed/31351461 http://dx.doi.org/10.1186/s12906-019-2590-9 |
Sumario: | BACKGROUND: Apiole was isolated from the leaves of various plants and vegetables and has been demonstrated to inhibit human colon cancer cell (COLO 205 cells) growth through induction of G0/G1 cell cycle arrest and apoptotic cell death. This study further explored the antitumor effects of apiole derivatives AP-02, 04, and 05 in COLO 205 cancer cells. METHODS: Human breast (MDA-MB-231, ZR75), lung (A549, PE089), colon (COLO 205, HT 29), and hepatocellular (Hep G2, Hep 3B) cancer cells were treated with apiole and its derivatives in a dose-dependent manner. Flow cytometry analysis was subsequently performed to determine the mechanism of AP-02-induced G0/G1 cell cycle arrest. The in vivo antitumor effect of AP-02 (1 and 5 mg/kg, administered twice per week) was examined by treating athymic nude mice bearing COLO 205 tumor xenografts. The molecular mechanisms of AP-02-induced antitumor effects were determined using western blot analysis. RESULTS: AP-02 was the most effective compound, especially for inhibition of COLO 205 colon cancer cell growth. The cytotoxicity of AP-02 in normal colon epithelial (FHC) cells was significantly lower than that in other normal cells derived from the breast, lung or liver. Flow cytometry analysis indicated that AP-02-induced G0/G1 cell cycle arrest in COLO 205 cells but not in HT 29 cells (< 5 μM for 24 h, **p < 0.01). Tumor growth volume was also significantly inhibited in AP-02 (> 1 mg/kg)-treated athymic nude mice bearing COLO 205 tumor xenografts compared to control mice (*p < 0.05). Furthermore, G0/G1 phase regulatory proteins (p53 and p21/Cip1) and an invasion suppressor protein (E-cadherin) were significantly upregulated, while cyclin D1 was significantly downregulated, in AP-02-treated tumor tissues compared to the control group (> 1 mg/kg, *p < 0.05). CONCLUSIONS: Our results provide in vitro and in vivo molecular evidence of AP-02-induced anti-proliferative effects on colon cancer, indicating that this compound might have potential clinical applications. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12906-019-2590-9) contains supplementary material, which is available to authorized users. |
---|