Cargando…
Characterizing wing tears in common pipistrelles (Pipistrellus pipistrellus): investigating tear distribution, wing strength, and possible causes
Bats have large, thin wings that are particularly susceptible to tearing. Anatomical specializations, such as fiber reinforcement, strengthen the wing and increase its resistance to puncture, and an extensive vasculature system across the wing also promotes healing. We investigated whether tear posi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660809/ https://www.ncbi.nlm.nih.gov/pubmed/31379390 http://dx.doi.org/10.1093/jmammal/gyz081 |
_version_ | 1783439365548015616 |
---|---|
author | Khayat, Rana Osama S Shaw, Kirsty J Dougill, Gary Melling, Louise M Ferris, Glenn R Cooper, Glen Grant, Robyn A |
author_facet | Khayat, Rana Osama S Shaw, Kirsty J Dougill, Gary Melling, Louise M Ferris, Glenn R Cooper, Glen Grant, Robyn A |
author_sort | Khayat, Rana Osama S |
collection | PubMed |
description | Bats have large, thin wings that are particularly susceptible to tearing. Anatomical specializations, such as fiber reinforcement, strengthen the wing and increase its resistance to puncture, and an extensive vasculature system across the wing also promotes healing. We investigated whether tear positioning is associated with anatomy in common pipistrelles (Pipistrellus pipistrellus). Wing anatomy was described using histological techniques, imaging, and material testing. Tear information, including type, position, time in rehabilitation, and possible causes, was collected from rehabilitators of injured bats across the United Kingdom. Results suggest that the position of the plagiopatagium (the most proximal wing section to the body), rather than its anatomy, influenced the number, location, and orientation of wing tears. While material testing did not identify the plagiopatagium as being significantly weaker than the chiropatagium (the more distal sections of the wing), the plagiopatagium tended to have the most tears. The position of the tears, close to the body and toward the trailing edge, suggests that they are caused by predator attacks, such as from a cat (Felis catus), rather than collisions. Consistent with this, 38% of P. pipistrellus individuals had confirmed wing tears caused by cats, with an additional 38% identified by rehabilitators as due to suspected cat attacks. The plagiopatagium had the lowest number of blood vessels and highest amounts of elastin fibers, suggesting that healing may take longer in this section. Further investigations into the causes of tears, and their effect on flight capabilities, will help to improve bat rehabilitation. |
format | Online Article Text |
id | pubmed-6660809 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-66608092019-08-02 Characterizing wing tears in common pipistrelles (Pipistrellus pipistrellus): investigating tear distribution, wing strength, and possible causes Khayat, Rana Osama S Shaw, Kirsty J Dougill, Gary Melling, Louise M Ferris, Glenn R Cooper, Glen Grant, Robyn A J Mammal Feature Articles Bats have large, thin wings that are particularly susceptible to tearing. Anatomical specializations, such as fiber reinforcement, strengthen the wing and increase its resistance to puncture, and an extensive vasculature system across the wing also promotes healing. We investigated whether tear positioning is associated with anatomy in common pipistrelles (Pipistrellus pipistrellus). Wing anatomy was described using histological techniques, imaging, and material testing. Tear information, including type, position, time in rehabilitation, and possible causes, was collected from rehabilitators of injured bats across the United Kingdom. Results suggest that the position of the plagiopatagium (the most proximal wing section to the body), rather than its anatomy, influenced the number, location, and orientation of wing tears. While material testing did not identify the plagiopatagium as being significantly weaker than the chiropatagium (the more distal sections of the wing), the plagiopatagium tended to have the most tears. The position of the tears, close to the body and toward the trailing edge, suggests that they are caused by predator attacks, such as from a cat (Felis catus), rather than collisions. Consistent with this, 38% of P. pipistrellus individuals had confirmed wing tears caused by cats, with an additional 38% identified by rehabilitators as due to suspected cat attacks. The plagiopatagium had the lowest number of blood vessels and highest amounts of elastin fibers, suggesting that healing may take longer in this section. Further investigations into the causes of tears, and their effect on flight capabilities, will help to improve bat rehabilitation. Oxford University Press 2019-07-27 2019-06-04 /pmc/articles/PMC6660809/ /pubmed/31379390 http://dx.doi.org/10.1093/jmammal/gyz081 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of American Society of Mammalogists. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Feature Articles Khayat, Rana Osama S Shaw, Kirsty J Dougill, Gary Melling, Louise M Ferris, Glenn R Cooper, Glen Grant, Robyn A Characterizing wing tears in common pipistrelles (Pipistrellus pipistrellus): investigating tear distribution, wing strength, and possible causes |
title | Characterizing wing tears in common pipistrelles (Pipistrellus pipistrellus): investigating tear distribution, wing strength, and possible causes |
title_full | Characterizing wing tears in common pipistrelles (Pipistrellus pipistrellus): investigating tear distribution, wing strength, and possible causes |
title_fullStr | Characterizing wing tears in common pipistrelles (Pipistrellus pipistrellus): investigating tear distribution, wing strength, and possible causes |
title_full_unstemmed | Characterizing wing tears in common pipistrelles (Pipistrellus pipistrellus): investigating tear distribution, wing strength, and possible causes |
title_short | Characterizing wing tears in common pipistrelles (Pipistrellus pipistrellus): investigating tear distribution, wing strength, and possible causes |
title_sort | characterizing wing tears in common pipistrelles (pipistrellus pipistrellus): investigating tear distribution, wing strength, and possible causes |
topic | Feature Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660809/ https://www.ncbi.nlm.nih.gov/pubmed/31379390 http://dx.doi.org/10.1093/jmammal/gyz081 |
work_keys_str_mv | AT khayatranaosamas characterizingwingtearsincommonpipistrellespipistrelluspipistrellusinvestigatingteardistributionwingstrengthandpossiblecauses AT shawkirstyj characterizingwingtearsincommonpipistrellespipistrelluspipistrellusinvestigatingteardistributionwingstrengthandpossiblecauses AT dougillgary characterizingwingtearsincommonpipistrellespipistrelluspipistrellusinvestigatingteardistributionwingstrengthandpossiblecauses AT mellinglouisem characterizingwingtearsincommonpipistrellespipistrelluspipistrellusinvestigatingteardistributionwingstrengthandpossiblecauses AT ferrisglennr characterizingwingtearsincommonpipistrellespipistrelluspipistrellusinvestigatingteardistributionwingstrengthandpossiblecauses AT cooperglen characterizingwingtearsincommonpipistrellespipistrelluspipistrellusinvestigatingteardistributionwingstrengthandpossiblecauses AT grantrobyna characterizingwingtearsincommonpipistrellespipistrelluspipistrellusinvestigatingteardistributionwingstrengthandpossiblecauses |