Cargando…
Late Pleistocene climate change and population dynamics of Japanese Myodes voles inferred from mitochondrial cytochrome b sequences
The Japanese archipelago is comprised of four main islands—Hokkaido, Honshu, Shikoku, and Kyushu—which contain high mountainous areas that likely allowed for lineage differentiation and population genetic structuring during the climatic changes of the late Pleistocene. Here, we assess the historical...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660811/ https://www.ncbi.nlm.nih.gov/pubmed/31379389 http://dx.doi.org/10.1093/jmammal/gyz093 |
Sumario: | The Japanese archipelago is comprised of four main islands—Hokkaido, Honshu, Shikoku, and Kyushu—which contain high mountainous areas that likely allowed for lineage differentiation and population genetic structuring during the climatic changes of the late Pleistocene. Here, we assess the historical background of the evolutionary dynamics of herbivorous red-backed voles (Myodes) in Japan, examining the evolutionary trends of mitochondrial cytochrome b gene (Cytb) sequence variation. Four apparent signals from rapid expansion events were detected in three species, M. rufocanus and M. rutilus from Hokkaido and M. smithii from central Honshu. Taken together with results from previous studies on Japanese wood mice (Apodemus spp.), three of the expansion events were considered to be associated with predicted bottleneck events at the marine isotope stage (MIS) 4 period, in which glaciers are thought to have expanded extensively, especially at higher elevations. In the late Pleistocene, the possible candidates are transitions MIS 6/5, MIS 4/3, and MIS 2/1, which can be characterized by the cold periods of the penultimate glacial maximum, MIS 4, and the last glacial maximum, respectively. Our data further reveal the genetic footprints of repeated range expansion and contraction in the northern and southern lineages of the vole species currently found in central Honshu, namely M. andersoni and M. smithii, in response to climatic oscillation during the late Pleistocene. The time-dependent evolutionary rates of the mitochondrial Cytb presented here would provide a possible way for assessing population dynamics of cricetid rodents responding to the late Pleistocene environmental fluctuation. |
---|