Cargando…

Differential transcriptome analysis of the disease tolerant Madagascar–Malaysia crossbred black tiger shrimp, Penaeus monodon hepatopancreas in response to acute hepatopancreatic necrosis disease (AHPND) infection: inference on immune gene response and interaction

BACKGROUND: Penaeus monodon is the second most widely cultured marine shrimp species in the global shrimp aquaculture industry. However, the growth of P. monodon production has been constantly impaired by disease outbreaks. Recently, there is a lethal bacterial infection, known as acute hepatopancre...

Descripción completa

Detalles Bibliográficos
Autores principales: Soo, Tze Chiew Christie, Devadas, Sridevi, Mohamed Din, Mohamed Shariff, Bhassu, Subha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660963/
https://www.ncbi.nlm.nih.gov/pubmed/31372182
http://dx.doi.org/10.1186/s13099-019-0319-4
_version_ 1783439392320258048
author Soo, Tze Chiew Christie
Devadas, Sridevi
Mohamed Din, Mohamed Shariff
Bhassu, Subha
author_facet Soo, Tze Chiew Christie
Devadas, Sridevi
Mohamed Din, Mohamed Shariff
Bhassu, Subha
author_sort Soo, Tze Chiew Christie
collection PubMed
description BACKGROUND: Penaeus monodon is the second most widely cultured marine shrimp species in the global shrimp aquaculture industry. However, the growth of P. monodon production has been constantly impaired by disease outbreaks. Recently, there is a lethal bacterial infection, known as acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus AHPND strain (Vp(AHPND)), which led to mass mortalities in P. monodon. Unfortunately, there is still insufficient knowledge about the underlying immune response of P. monodon upon AHPND infection. The present study aims to provide an insight into the antibacterial immune response elicited by P. monodon hepatopancreas towards AHPND infection. METHODS: We have employed high-throughput RNA-Seq technology to uncover the transcriptome changes of P. monodon hepatopancreas when challenged with Vp(AHPND). The shrimps were challenged with Vp(AHPND) through immersion method with dissected hepatopancreas samples for the control group (APm-CTL) and treatment group at 3 (APm-T3), 6 (APm-T6), and 24 (APm-T24) hours post-AHPND infection sent for RNA-Seq. The transcriptome de novo assembly and Unigene expression determination were conducted using Trinity, Tgicl, Bowtie2, and RSEM software. The differentially expressed transcripts were functionally annotated mainly through COG, GO, and KEGG databases. RESULTS: The sequencing reads generated were filtered to obtain 312.77 Mb clean reads and assembled into 48662 Unigenes. Based on the DEGs pattern identified, it is inferred that the PAMPs carried by Vp(AHPND) or associated toxins are capable of activating PRRs, which leads to subsequent pathway activation, transcriptional modification, and antibacterial responses (Phagocytosis, AMPs, proPO system). DAMPs are released in response to cell stress or damage to further activate the sequential immune responses. The comprehensive interactions between Vp(AHPND), chitin, GbpA, mucin, chitinase, and chitin deacetylase were postulated to be involved in bacterial colonization or antibacterial response. CONCLUSIONS: The outcomes of this research correlate the different stages of P. monodon immune response to different time points of AHPND infection. This finding supports the development of biomarkers for the detection of early stages of Vp(AHPND) colonization in P. monodon through host immune expression changes. The potential genes to be utilized as biomarkers include but not limited to C-type lectin, HMGB1, IMD, ALF, serine proteinase, and DSCAM. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13099-019-0319-4) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6660963
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-66609632019-08-01 Differential transcriptome analysis of the disease tolerant Madagascar–Malaysia crossbred black tiger shrimp, Penaeus monodon hepatopancreas in response to acute hepatopancreatic necrosis disease (AHPND) infection: inference on immune gene response and interaction Soo, Tze Chiew Christie Devadas, Sridevi Mohamed Din, Mohamed Shariff Bhassu, Subha Gut Pathog Research BACKGROUND: Penaeus monodon is the second most widely cultured marine shrimp species in the global shrimp aquaculture industry. However, the growth of P. monodon production has been constantly impaired by disease outbreaks. Recently, there is a lethal bacterial infection, known as acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus AHPND strain (Vp(AHPND)), which led to mass mortalities in P. monodon. Unfortunately, there is still insufficient knowledge about the underlying immune response of P. monodon upon AHPND infection. The present study aims to provide an insight into the antibacterial immune response elicited by P. monodon hepatopancreas towards AHPND infection. METHODS: We have employed high-throughput RNA-Seq technology to uncover the transcriptome changes of P. monodon hepatopancreas when challenged with Vp(AHPND). The shrimps were challenged with Vp(AHPND) through immersion method with dissected hepatopancreas samples for the control group (APm-CTL) and treatment group at 3 (APm-T3), 6 (APm-T6), and 24 (APm-T24) hours post-AHPND infection sent for RNA-Seq. The transcriptome de novo assembly and Unigene expression determination were conducted using Trinity, Tgicl, Bowtie2, and RSEM software. The differentially expressed transcripts were functionally annotated mainly through COG, GO, and KEGG databases. RESULTS: The sequencing reads generated were filtered to obtain 312.77 Mb clean reads and assembled into 48662 Unigenes. Based on the DEGs pattern identified, it is inferred that the PAMPs carried by Vp(AHPND) or associated toxins are capable of activating PRRs, which leads to subsequent pathway activation, transcriptional modification, and antibacterial responses (Phagocytosis, AMPs, proPO system). DAMPs are released in response to cell stress or damage to further activate the sequential immune responses. The comprehensive interactions between Vp(AHPND), chitin, GbpA, mucin, chitinase, and chitin deacetylase were postulated to be involved in bacterial colonization or antibacterial response. CONCLUSIONS: The outcomes of this research correlate the different stages of P. monodon immune response to different time points of AHPND infection. This finding supports the development of biomarkers for the detection of early stages of Vp(AHPND) colonization in P. monodon through host immune expression changes. The potential genes to be utilized as biomarkers include but not limited to C-type lectin, HMGB1, IMD, ALF, serine proteinase, and DSCAM. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13099-019-0319-4) contains supplementary material, which is available to authorized users. BioMed Central 2019-07-26 /pmc/articles/PMC6660963/ /pubmed/31372182 http://dx.doi.org/10.1186/s13099-019-0319-4 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Soo, Tze Chiew Christie
Devadas, Sridevi
Mohamed Din, Mohamed Shariff
Bhassu, Subha
Differential transcriptome analysis of the disease tolerant Madagascar–Malaysia crossbred black tiger shrimp, Penaeus monodon hepatopancreas in response to acute hepatopancreatic necrosis disease (AHPND) infection: inference on immune gene response and interaction
title Differential transcriptome analysis of the disease tolerant Madagascar–Malaysia crossbred black tiger shrimp, Penaeus monodon hepatopancreas in response to acute hepatopancreatic necrosis disease (AHPND) infection: inference on immune gene response and interaction
title_full Differential transcriptome analysis of the disease tolerant Madagascar–Malaysia crossbred black tiger shrimp, Penaeus monodon hepatopancreas in response to acute hepatopancreatic necrosis disease (AHPND) infection: inference on immune gene response and interaction
title_fullStr Differential transcriptome analysis of the disease tolerant Madagascar–Malaysia crossbred black tiger shrimp, Penaeus monodon hepatopancreas in response to acute hepatopancreatic necrosis disease (AHPND) infection: inference on immune gene response and interaction
title_full_unstemmed Differential transcriptome analysis of the disease tolerant Madagascar–Malaysia crossbred black tiger shrimp, Penaeus monodon hepatopancreas in response to acute hepatopancreatic necrosis disease (AHPND) infection: inference on immune gene response and interaction
title_short Differential transcriptome analysis of the disease tolerant Madagascar–Malaysia crossbred black tiger shrimp, Penaeus monodon hepatopancreas in response to acute hepatopancreatic necrosis disease (AHPND) infection: inference on immune gene response and interaction
title_sort differential transcriptome analysis of the disease tolerant madagascar–malaysia crossbred black tiger shrimp, penaeus monodon hepatopancreas in response to acute hepatopancreatic necrosis disease (ahpnd) infection: inference on immune gene response and interaction
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660963/
https://www.ncbi.nlm.nih.gov/pubmed/31372182
http://dx.doi.org/10.1186/s13099-019-0319-4
work_keys_str_mv AT sootzechiewchristie differentialtranscriptomeanalysisofthediseasetolerantmadagascarmalaysiacrossbredblacktigershrimppenaeusmonodonhepatopancreasinresponsetoacutehepatopancreaticnecrosisdiseaseahpndinfectioninferenceonimmunegeneresponseandinteraction
AT devadassridevi differentialtranscriptomeanalysisofthediseasetolerantmadagascarmalaysiacrossbredblacktigershrimppenaeusmonodonhepatopancreasinresponsetoacutehepatopancreaticnecrosisdiseaseahpndinfectioninferenceonimmunegeneresponseandinteraction
AT mohameddinmohamedshariff differentialtranscriptomeanalysisofthediseasetolerantmadagascarmalaysiacrossbredblacktigershrimppenaeusmonodonhepatopancreasinresponsetoacutehepatopancreaticnecrosisdiseaseahpndinfectioninferenceonimmunegeneresponseandinteraction
AT bhassusubha differentialtranscriptomeanalysisofthediseasetolerantmadagascarmalaysiacrossbredblacktigershrimppenaeusmonodonhepatopancreasinresponsetoacutehepatopancreaticnecrosisdiseaseahpndinfectioninferenceonimmunegeneresponseandinteraction