Cargando…
Clinical impact of variability on CT radiomics and suggestions for suitable feature selection: a focus on lung cancer
BACKGROUND: Radiomics suffers from feature reproducibility. We studied the variability of radiomics features and the relationship of radiomics features with tumor size and shape to determine guidelines for optimal radiomics study. METHODS: We dealt with 260 lung nodules (180 for training, 80 for tes...
Autores principales: | Lee, Seung-Hak, Cho, Hwan-ho, Lee, Ho Yun, Park, Hyunjin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660971/ https://www.ncbi.nlm.nih.gov/pubmed/31349872 http://dx.doi.org/10.1186/s40644-019-0239-z |
Ejemplares similares
-
Are radiomics features universally applicable to different organs?
por: Lee, Seung-Hak, et al.
Publicado: (2021) -
Classification of the glioma grading using radiomics analysis
por: Cho, Hwan-ho, et al.
Publicado: (2018) -
Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans
por: Cho, Hwan-ho, et al.
Publicado: (2021) -
Pleomorphic carcinoma of the lung: Prognostic models of semantic, radiomics and combined features from CT and PET/CT in 85 patients
por: Kim, Chohee, et al.
Publicado: (2021) -
Prognostic Impact of Longitudinal Monitoring of Radiomic Features in Patients with Advanced Non-Small Cell Lung Cancer
por: Bak, So Hyeon, et al.
Publicado: (2019)