Cargando…
Prediction of Recovery From Severe Hemorrhagic Shock Using Logistic Regression
This paper implements logistic regression models (LRMs) and feature selection for creating a predictive model for recovery form hemorrhagic shock (HS) with resuscitation using blood in the multiple experimental rat animal protocols. A total of 61 animals were studied across multiple HS experiments,...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6661015/ https://www.ncbi.nlm.nih.gov/pubmed/31367491 http://dx.doi.org/10.1109/JTEHM.2019.2924011 |
Ejemplares similares
-
Using Logistic Regression to Predict Onset and Recovery With Tau Equivalency
por: Sorjonen, Kimmo, et al.
Publicado: (2018) -
Establishment and validation of a logistic regression model for prediction of septic shock severity in children
por: Han, Yujie, et al.
Publicado: (2021) -
Leukemia Prediction Using Sparse Logistic Regression
por: Manninen, Tapio, et al.
Publicado: (2013) -
Predicting the Severity of Adverse Events on Osteoporosis Drugs Using Attribute Weighted Logistic Regression
por: Ibrahim, Neveen, et al.
Publicado: (2023) -
Prediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis
por: Ebrahimzadeh, Farzad, et al.
Publicado: (2015)