Cargando…
Data set on prediction of friction stir welding parameters to achieve maximum strength of AA2014-T6 aluminium alloy joints
Statistical tools such as design of experiments (DoE), analysis of variance (ANOVA) were used to develop the empirical relationship, to predict the ultimate tensile strength of the joint at the 95% percent confidence level. Response surface graph and contour plots were constructed using response sur...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6661257/ https://www.ncbi.nlm.nih.gov/pubmed/31372402 http://dx.doi.org/10.1016/j.dib.2019.103735 |
_version_ | 1783439422576918528 |
---|---|
author | Rajendran, C. Srinivasan, K. Balasubramanian, V. Balaji, H. Selvaraj, P. |
author_facet | Rajendran, C. Srinivasan, K. Balasubramanian, V. Balaji, H. Selvaraj, P. |
author_sort | Rajendran, C. |
collection | PubMed |
description | Statistical tools such as design of experiments (DoE), analysis of variance (ANOVA) were used to develop the empirical relationship, to predict the ultimate tensile strength of the joint at the 95% percent confidence level. Response surface graph and contour plots were constructed using response surface methodology (RSM) concept. From this investigation, it is found that the joint fabricated with a tool rotational speed of 1500 rpm, welding speed of 40 mm/min, tool tilt angle of 1.5° and tool shoulder diameter of 6 mm, exhibited maximum tensile strength of 380 MPa. |
format | Online Article Text |
id | pubmed-6661257 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-66612572019-08-01 Data set on prediction of friction stir welding parameters to achieve maximum strength of AA2014-T6 aluminium alloy joints Rajendran, C. Srinivasan, K. Balasubramanian, V. Balaji, H. Selvaraj, P. Data Brief Materials Science Statistical tools such as design of experiments (DoE), analysis of variance (ANOVA) were used to develop the empirical relationship, to predict the ultimate tensile strength of the joint at the 95% percent confidence level. Response surface graph and contour plots were constructed using response surface methodology (RSM) concept. From this investigation, it is found that the joint fabricated with a tool rotational speed of 1500 rpm, welding speed of 40 mm/min, tool tilt angle of 1.5° and tool shoulder diameter of 6 mm, exhibited maximum tensile strength of 380 MPa. Elsevier 2019-03-14 /pmc/articles/PMC6661257/ /pubmed/31372402 http://dx.doi.org/10.1016/j.dib.2019.103735 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Materials Science Rajendran, C. Srinivasan, K. Balasubramanian, V. Balaji, H. Selvaraj, P. Data set on prediction of friction stir welding parameters to achieve maximum strength of AA2014-T6 aluminium alloy joints |
title | Data set on prediction of friction stir welding parameters to achieve maximum strength of AA2014-T6 aluminium alloy joints |
title_full | Data set on prediction of friction stir welding parameters to achieve maximum strength of AA2014-T6 aluminium alloy joints |
title_fullStr | Data set on prediction of friction stir welding parameters to achieve maximum strength of AA2014-T6 aluminium alloy joints |
title_full_unstemmed | Data set on prediction of friction stir welding parameters to achieve maximum strength of AA2014-T6 aluminium alloy joints |
title_short | Data set on prediction of friction stir welding parameters to achieve maximum strength of AA2014-T6 aluminium alloy joints |
title_sort | data set on prediction of friction stir welding parameters to achieve maximum strength of aa2014-t6 aluminium alloy joints |
topic | Materials Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6661257/ https://www.ncbi.nlm.nih.gov/pubmed/31372402 http://dx.doi.org/10.1016/j.dib.2019.103735 |
work_keys_str_mv | AT rajendranc datasetonpredictionoffrictionstirweldingparameterstoachievemaximumstrengthofaa2014t6aluminiumalloyjoints AT srinivasank datasetonpredictionoffrictionstirweldingparameterstoachievemaximumstrengthofaa2014t6aluminiumalloyjoints AT balasubramanianv datasetonpredictionoffrictionstirweldingparameterstoachievemaximumstrengthofaa2014t6aluminiumalloyjoints AT balajih datasetonpredictionoffrictionstirweldingparameterstoachievemaximumstrengthofaa2014t6aluminiumalloyjoints AT selvarajp datasetonpredictionoffrictionstirweldingparameterstoachievemaximumstrengthofaa2014t6aluminiumalloyjoints |