Cargando…
Emergence of digital biomarkers to predict and modify treatment efficacy: machine learning study
OBJECTIVES: Development of digital biomarkers to predict treatment response to a digital behavioural intervention. DESIGN: Machine learning using random forest classifiers on data generated through the use of a digital therapeutic which delivers behavioural therapy to treat cardiometabolic disease....
Autores principales: | Guthrie, Nicole L, Carpenter, Jason, Edwards, Katherine L, Appelbaum, Kevin J, Dey, Sourav, Eisenberg, David M, Katz, David L, Berman, Mark A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6661657/ https://www.ncbi.nlm.nih.gov/pubmed/31337662 http://dx.doi.org/10.1136/bmjopen-2019-030710 |
Ejemplares similares
-
Achieving Rapid Blood Pressure Control With Digital Therapeutics: Retrospective Cohort and Machine Learning Study
por: Guthrie, Nicole L, et al.
Publicado: (2019) -
Change in Glycemic Control With Use of a Digital Therapeutic in Adults With Type 2 Diabetes: Cohort Study
por: Berman, Mark A, et al.
Publicado: (2018) -
SAT-LB120 A Software Application Delivering Behavioral Therapy Improved Glycemic Control in Adults With Type 2 Diabetes
por: Guthrie, Nicole L, et al.
Publicado: (2020) -
Estimating the Impact of Novel Digital Therapeutics in Type 2 Diabetes and Hypertension: Health Economic Analysis
por: Nordyke, Robert J, et al.
Publicado: (2019) -
The role of digital health in the cardiovascular learning healthcare system
por: Maddula, Ragasnehith, et al.
Publicado: (2022)