Cargando…
Sunlight Polymerization of Poly(amidoxime) Hydrogel Membrane for Enhanced Uranium Extraction from Seawater
The uranium level in seawater is ≈1000 times as high as terrestrial ores and can provide potential near‐infinite fuel for the nuclear energy industry. However, it is still a significant challenge to develop high‐efficiency and low‐cost adsorbents for massively extracting uranium from seawater. Herei...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662065/ https://www.ncbi.nlm.nih.gov/pubmed/31380182 http://dx.doi.org/10.1002/advs.201900085 |
Sumario: | The uranium level in seawater is ≈1000 times as high as terrestrial ores and can provide potential near‐infinite fuel for the nuclear energy industry. However, it is still a significant challenge to develop high‐efficiency and low‐cost adsorbents for massively extracting uranium from seawater. Herein, a simple and fast method through low‐energy consumption sunlight polymerization to direct fabrication of a poly(amidoxime) (PAO) hydrogel membrane, which exhibits high uranium adsorption capacity, is reported. This PAO hydrogel owns semi‐interpenetrating structure and a hydrophilic poly(acrylamide) 3D network of hydrogel which can disperse and fix PAOs well. As a result, the amidoxime groups of PAOs exhibit an outstanding uranium adsorption efficiency (718 ± 16.6 and 1279 ± 14.5 mg g(−1) of m (uranium)/m (PAO) in 8 and 32 ppm uranium‐spiked seawater, respectively) among reported hydrogel‐based adsorbents. Most importantly, U‐uptake capacity of this hydrogel can achieve 4.87 ± 0.38 mg g(−1) of m (uranium)/m (dry gel) just after four weeks within natural seawater. Furthermore, this hydrogel can be massively produced through low‐energy consumption and environmentally‐friendly sunlight polymerization. This work will provide a high‐efficiency and low‐cost adsorbent for massive uranium extraction from seawater. |
---|