Cargando…
Kirigami Patterning of MXene/Bacterial Cellulose Composite Paper for All‐Solid‐State Stretchable Micro‐Supercapacitor Arrays
Stretchable micropower sources with high energy density and stability under repeated tensile deformation are key components of flexible/wearable microelectronics. Herein, through the combination of strain engineering and modulation of the interlayer spacing, freestanding and lightweight MXene/bacter...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662096/ https://www.ncbi.nlm.nih.gov/pubmed/31380175 http://dx.doi.org/10.1002/advs.201900529 |
Sumario: | Stretchable micropower sources with high energy density and stability under repeated tensile deformation are key components of flexible/wearable microelectronics. Herein, through the combination of strain engineering and modulation of the interlayer spacing, freestanding and lightweight MXene/bacterial cellulose (BC) composite papers with excellent mechanical stability and a high electrochemical performance are first designed and prepared via a facile all‐solution‐based paper‐making process. Following a simple laser‐cutting kirigami patterning process, bendable, twistable, and stretchable all‐solid‐state micro‐supercapacitor arrays (MSCAs) are further fabricated. As expected, benefiting from the high‐performance MXene/BC composite electrodes and rational sectional structural design, the resulting kirigami MSCAs exhibit a high areal capacitance of 111.5 mF cm(−2), and are stable upon stretching of up to 100% elongation, and in bent or twisted states. The demonstrated combination of an all‐solution‐based MXene/BC composite paper‐making method and an easily manipulated laser‐cutting kirigami patterning technique enables the fabrication of MXene‐based deformable all‐solid‐state planar MSCAs in a simple and efficient manner while achieving excellent areal performance metrics and high stretchability, making them promising micropower sources that are compatible with flexible/wearable microelectronics. |
---|