Cargando…
Systematic selection of chemical fingerprint features improves the Gibbs energy prediction of biochemical reactions
MOTIVATION: Accurate and wide-ranging prediction of thermodynamic parameters for biochemical reactions can facilitate deeper insights into the workings and the design of metabolic systems. RESULTS: Here, we introduce a machine learning method with chemical fingerprint-based features for the predicti...
Autores principales: | Alazmi, Meshari, Kuwahara, Hiroyuki, Soufan, Othman, Ding, Lizhong, Gao, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662295/ https://www.ncbi.nlm.nih.gov/pubmed/30590445 http://dx.doi.org/10.1093/bioinformatics/bty1035 |
Ejemplares similares
-
MRE: a web tool to suggest foreign enzymes for the biosynthesis pathway design with competing endogenous reactions in mind
por: Kuwahara, Hiroyuki, et al.
Publicado: (2016) -
Gibbs Free Energy and Reaction Rate Acceleration in and on Microdroplets
por: Tuck, Adrian F
Publicado: (2019) -
Standard Gibbs Energy of Metabolic Reactions: III
The 3-Phosphoglycerate Kinase Reaction
por: Wangler, Anton, et al.
Publicado: (2018) -
Predictions of Entropy and Gibbs Energy for Carbonyl
Sulfide
por: Jia, Chun-Sheng, et al.
Publicado: (2019) -
Ternary Mixed Micelle Hexadecyltrimethylammonium Bromide—Dodecyltrimethylammonium Bromide—Sodium Deoxycholate: Gibbs Free Energy of Mixing and Excess Gibbs Energy of Mixing
por: Pilipović, Ana, et al.
Publicado: (2023)