Cargando…

Microstructural control suppresses thermal activation of electron transport at room temperature in polymer transistors

Recent demonstrations of inverted thermal activation of charge mobility in polymer field-effect transistors have excited the interest in transport regimes not limited by thermal barriers. However, rationalization of the limiting factors to access such regimes is still lacking. An improved understand...

Descripción completa

Detalles Bibliográficos
Autores principales: Luzio, Alessandro, Nübling, Fritz, Martin, Jaime, Fazzi, Daniele, Selter, Philipp, Gann, Eliot, McNeill, Christopher R., Brinkmann, Martin, Hansen, Michael Ryan, Stingelin, Natalie, Sommer, Michael, Caironi, Mario
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662673/
https://www.ncbi.nlm.nih.gov/pubmed/31358747
http://dx.doi.org/10.1038/s41467-019-11125-9
_version_ 1783439687586676736
author Luzio, Alessandro
Nübling, Fritz
Martin, Jaime
Fazzi, Daniele
Selter, Philipp
Gann, Eliot
McNeill, Christopher R.
Brinkmann, Martin
Hansen, Michael Ryan
Stingelin, Natalie
Sommer, Michael
Caironi, Mario
author_facet Luzio, Alessandro
Nübling, Fritz
Martin, Jaime
Fazzi, Daniele
Selter, Philipp
Gann, Eliot
McNeill, Christopher R.
Brinkmann, Martin
Hansen, Michael Ryan
Stingelin, Natalie
Sommer, Michael
Caironi, Mario
author_sort Luzio, Alessandro
collection PubMed
description Recent demonstrations of inverted thermal activation of charge mobility in polymer field-effect transistors have excited the interest in transport regimes not limited by thermal barriers. However, rationalization of the limiting factors to access such regimes is still lacking. An improved understanding in this area is critical for development of new materials, establishing processing guidelines, and broadening of the range of applications. Here we show that precise processing of a diketopyrrolopyrrole-tetrafluorobenzene-based electron transporting copolymer results in single crystal-like and voltage-independent mobility with vanishing activation energy above 280 K. Key factors are uniaxial chain alignment and thermal annealing at temperatures within the melting endotherm of films. Experimental and computational evidences converge toward a picture of electrons being delocalized within crystalline domains of increased size. Residual energy barriers introduced by disordered regions are bypassed in the direction of molecular alignment by a more efficient interconnection of the ordered domains following the annealing process.
format Online
Article
Text
id pubmed-6662673
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-66626732019-07-29 Microstructural control suppresses thermal activation of electron transport at room temperature in polymer transistors Luzio, Alessandro Nübling, Fritz Martin, Jaime Fazzi, Daniele Selter, Philipp Gann, Eliot McNeill, Christopher R. Brinkmann, Martin Hansen, Michael Ryan Stingelin, Natalie Sommer, Michael Caironi, Mario Nat Commun Article Recent demonstrations of inverted thermal activation of charge mobility in polymer field-effect transistors have excited the interest in transport regimes not limited by thermal barriers. However, rationalization of the limiting factors to access such regimes is still lacking. An improved understanding in this area is critical for development of new materials, establishing processing guidelines, and broadening of the range of applications. Here we show that precise processing of a diketopyrrolopyrrole-tetrafluorobenzene-based electron transporting copolymer results in single crystal-like and voltage-independent mobility with vanishing activation energy above 280 K. Key factors are uniaxial chain alignment and thermal annealing at temperatures within the melting endotherm of films. Experimental and computational evidences converge toward a picture of electrons being delocalized within crystalline domains of increased size. Residual energy barriers introduced by disordered regions are bypassed in the direction of molecular alignment by a more efficient interconnection of the ordered domains following the annealing process. Nature Publishing Group UK 2019-07-29 /pmc/articles/PMC6662673/ /pubmed/31358747 http://dx.doi.org/10.1038/s41467-019-11125-9 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Luzio, Alessandro
Nübling, Fritz
Martin, Jaime
Fazzi, Daniele
Selter, Philipp
Gann, Eliot
McNeill, Christopher R.
Brinkmann, Martin
Hansen, Michael Ryan
Stingelin, Natalie
Sommer, Michael
Caironi, Mario
Microstructural control suppresses thermal activation of electron transport at room temperature in polymer transistors
title Microstructural control suppresses thermal activation of electron transport at room temperature in polymer transistors
title_full Microstructural control suppresses thermal activation of electron transport at room temperature in polymer transistors
title_fullStr Microstructural control suppresses thermal activation of electron transport at room temperature in polymer transistors
title_full_unstemmed Microstructural control suppresses thermal activation of electron transport at room temperature in polymer transistors
title_short Microstructural control suppresses thermal activation of electron transport at room temperature in polymer transistors
title_sort microstructural control suppresses thermal activation of electron transport at room temperature in polymer transistors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662673/
https://www.ncbi.nlm.nih.gov/pubmed/31358747
http://dx.doi.org/10.1038/s41467-019-11125-9
work_keys_str_mv AT luzioalessandro microstructuralcontrolsuppressesthermalactivationofelectrontransportatroomtemperatureinpolymertransistors
AT nublingfritz microstructuralcontrolsuppressesthermalactivationofelectrontransportatroomtemperatureinpolymertransistors
AT martinjaime microstructuralcontrolsuppressesthermalactivationofelectrontransportatroomtemperatureinpolymertransistors
AT fazzidaniele microstructuralcontrolsuppressesthermalactivationofelectrontransportatroomtemperatureinpolymertransistors
AT selterphilipp microstructuralcontrolsuppressesthermalactivationofelectrontransportatroomtemperatureinpolymertransistors
AT ganneliot microstructuralcontrolsuppressesthermalactivationofelectrontransportatroomtemperatureinpolymertransistors
AT mcneillchristopherr microstructuralcontrolsuppressesthermalactivationofelectrontransportatroomtemperatureinpolymertransistors
AT brinkmannmartin microstructuralcontrolsuppressesthermalactivationofelectrontransportatroomtemperatureinpolymertransistors
AT hansenmichaelryan microstructuralcontrolsuppressesthermalactivationofelectrontransportatroomtemperatureinpolymertransistors
AT stingelinnatalie microstructuralcontrolsuppressesthermalactivationofelectrontransportatroomtemperatureinpolymertransistors
AT sommermichael microstructuralcontrolsuppressesthermalactivationofelectrontransportatroomtemperatureinpolymertransistors
AT caironimario microstructuralcontrolsuppressesthermalactivationofelectrontransportatroomtemperatureinpolymertransistors