Cargando…

ORCA-SPOT: An Automatic Killer Whale Sound Detection Toolkit Using Deep Learning

Large bioacoustic archives of wild animals are an important source to identify reappearing communication patterns, which can then be related to recurring behavioral patterns to advance the current understanding of intra-specific communication of non-human animals. A main challenge remains that most...

Descripción completa

Detalles Bibliográficos
Autores principales: Bergler, Christian, Schröter, Hendrik, Cheng, Rachael Xi, Barth, Volker, Weber, Michael, Nöth, Elmar, Hofer, Heribert, Maier, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662697/
https://www.ncbi.nlm.nih.gov/pubmed/31358873
http://dx.doi.org/10.1038/s41598-019-47335-w
_version_ 1783439692836896768
author Bergler, Christian
Schröter, Hendrik
Cheng, Rachael Xi
Barth, Volker
Weber, Michael
Nöth, Elmar
Hofer, Heribert
Maier, Andreas
author_facet Bergler, Christian
Schröter, Hendrik
Cheng, Rachael Xi
Barth, Volker
Weber, Michael
Nöth, Elmar
Hofer, Heribert
Maier, Andreas
author_sort Bergler, Christian
collection PubMed
description Large bioacoustic archives of wild animals are an important source to identify reappearing communication patterns, which can then be related to recurring behavioral patterns to advance the current understanding of intra-specific communication of non-human animals. A main challenge remains that most large-scale bioacoustic archives contain only a small percentage of animal vocalizations and a large amount of environmental noise, which makes it extremely difficult to manually retrieve sufficient vocalizations for further analysis – particularly important for species with advanced social systems and complex vocalizations. In this study deep neural networks were trained on 11,509 killer whale (Orcinus orca) signals and 34,848 noise segments. The resulting toolkit ORCA-SPOT was tested on a large-scale bioacoustic repository – the Orchive – comprising roughly 19,000 hours of killer whale underwater recordings. An automated segmentation of the entire Orchive recordings (about 2.2 years) took approximately 8 days. It achieved a time-based precision or positive-predictive-value (PPV) of 93.2% and an area-under-the-curve (AUC) of 0.9523. This approach enables an automated annotation procedure of large bioacoustics databases to extract killer whale sounds, which are essential for subsequent identification of significant communication patterns. The code will be publicly available in October 2019 to support the application of deep learning to bioaoucstic research. ORCA-SPOT can be adapted to other animal species.
format Online
Article
Text
id pubmed-6662697
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-66626972019-08-02 ORCA-SPOT: An Automatic Killer Whale Sound Detection Toolkit Using Deep Learning Bergler, Christian Schröter, Hendrik Cheng, Rachael Xi Barth, Volker Weber, Michael Nöth, Elmar Hofer, Heribert Maier, Andreas Sci Rep Article Large bioacoustic archives of wild animals are an important source to identify reappearing communication patterns, which can then be related to recurring behavioral patterns to advance the current understanding of intra-specific communication of non-human animals. A main challenge remains that most large-scale bioacoustic archives contain only a small percentage of animal vocalizations and a large amount of environmental noise, which makes it extremely difficult to manually retrieve sufficient vocalizations for further analysis – particularly important for species with advanced social systems and complex vocalizations. In this study deep neural networks were trained on 11,509 killer whale (Orcinus orca) signals and 34,848 noise segments. The resulting toolkit ORCA-SPOT was tested on a large-scale bioacoustic repository – the Orchive – comprising roughly 19,000 hours of killer whale underwater recordings. An automated segmentation of the entire Orchive recordings (about 2.2 years) took approximately 8 days. It achieved a time-based precision or positive-predictive-value (PPV) of 93.2% and an area-under-the-curve (AUC) of 0.9523. This approach enables an automated annotation procedure of large bioacoustics databases to extract killer whale sounds, which are essential for subsequent identification of significant communication patterns. The code will be publicly available in October 2019 to support the application of deep learning to bioaoucstic research. ORCA-SPOT can be adapted to other animal species. Nature Publishing Group UK 2019-07-29 /pmc/articles/PMC6662697/ /pubmed/31358873 http://dx.doi.org/10.1038/s41598-019-47335-w Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Bergler, Christian
Schröter, Hendrik
Cheng, Rachael Xi
Barth, Volker
Weber, Michael
Nöth, Elmar
Hofer, Heribert
Maier, Andreas
ORCA-SPOT: An Automatic Killer Whale Sound Detection Toolkit Using Deep Learning
title ORCA-SPOT: An Automatic Killer Whale Sound Detection Toolkit Using Deep Learning
title_full ORCA-SPOT: An Automatic Killer Whale Sound Detection Toolkit Using Deep Learning
title_fullStr ORCA-SPOT: An Automatic Killer Whale Sound Detection Toolkit Using Deep Learning
title_full_unstemmed ORCA-SPOT: An Automatic Killer Whale Sound Detection Toolkit Using Deep Learning
title_short ORCA-SPOT: An Automatic Killer Whale Sound Detection Toolkit Using Deep Learning
title_sort orca-spot: an automatic killer whale sound detection toolkit using deep learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662697/
https://www.ncbi.nlm.nih.gov/pubmed/31358873
http://dx.doi.org/10.1038/s41598-019-47335-w
work_keys_str_mv AT berglerchristian orcaspotanautomatickillerwhalesounddetectiontoolkitusingdeeplearning
AT schroterhendrik orcaspotanautomatickillerwhalesounddetectiontoolkitusingdeeplearning
AT chengrachaelxi orcaspotanautomatickillerwhalesounddetectiontoolkitusingdeeplearning
AT barthvolker orcaspotanautomatickillerwhalesounddetectiontoolkitusingdeeplearning
AT webermichael orcaspotanautomatickillerwhalesounddetectiontoolkitusingdeeplearning
AT nothelmar orcaspotanautomatickillerwhalesounddetectiontoolkitusingdeeplearning
AT hoferheribert orcaspotanautomatickillerwhalesounddetectiontoolkitusingdeeplearning
AT maierandreas orcaspotanautomatickillerwhalesounddetectiontoolkitusingdeeplearning