Cargando…
Ice nucleation by aerosols from anthropogenic pollution
The formation of ice particles in the atmosphere strongly affects cloud properties and the climate. While mineral dust is known to be an effective ice nucleating particle, the role of aerosols from anthropogenic pollution in ice nucleation is still under debate. Here we probe the ice nucleation abil...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662716/ https://www.ncbi.nlm.nih.gov/pubmed/31360220 http://dx.doi.org/10.1038/s41561-019-0389-4 |
_version_ | 1783439697522982912 |
---|---|
author | Zhao, Bin Wang, Yuan Gu, Yu Liou, Kuo-Nan Jiang, Jonathan H. Fan, Jiwen Liu, Xiaohong Huang, Lei Yung, Yuk L. |
author_facet | Zhao, Bin Wang, Yuan Gu, Yu Liou, Kuo-Nan Jiang, Jonathan H. Fan, Jiwen Liu, Xiaohong Huang, Lei Yung, Yuk L. |
author_sort | Zhao, Bin |
collection | PubMed |
description | The formation of ice particles in the atmosphere strongly affects cloud properties and the climate. While mineral dust is known to be an effective ice nucleating particle, the role of aerosols from anthropogenic pollution in ice nucleation is still under debate. Here we probe the ice nucleation ability of different aerosol types by combining 11-year observations from multiple satellites and cloud-resolving model simulations. We find that, for strong convective systems, ice particle effective radius near cloud top decreases with increasing loading of polluted continental aerosols, because the ice formation is dominated by homogeneous freezing of cloud droplets that are smaller under more polluted conditions. In contrast, an increase in ice particle effective radius with polluted continental aerosols is found for moderate convection. Our model simulations suggest that this positive correlation is explained by enhanced heterogeneous ice nucleation and prolonged ice particle growth at larger aerosol loading, indicating that polluted continental aerosols contain a significant fraction of ice nucleating particles. Similar aerosol-ice relationships are observed for dust aerosols, further corroborating the ice nucleation ability of polluted continental aerosols. By catalyzing ice formation, aerosols from anthropogenic pollution could have profound impacts on cloud lifetime and radiative effect as well as precipitation efficiency. |
format | Online Article Text |
id | pubmed-6662716 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-66627162020-02-01 Ice nucleation by aerosols from anthropogenic pollution Zhao, Bin Wang, Yuan Gu, Yu Liou, Kuo-Nan Jiang, Jonathan H. Fan, Jiwen Liu, Xiaohong Huang, Lei Yung, Yuk L. Nat Geosci Article The formation of ice particles in the atmosphere strongly affects cloud properties and the climate. While mineral dust is known to be an effective ice nucleating particle, the role of aerosols from anthropogenic pollution in ice nucleation is still under debate. Here we probe the ice nucleation ability of different aerosol types by combining 11-year observations from multiple satellites and cloud-resolving model simulations. We find that, for strong convective systems, ice particle effective radius near cloud top decreases with increasing loading of polluted continental aerosols, because the ice formation is dominated by homogeneous freezing of cloud droplets that are smaller under more polluted conditions. In contrast, an increase in ice particle effective radius with polluted continental aerosols is found for moderate convection. Our model simulations suggest that this positive correlation is explained by enhanced heterogeneous ice nucleation and prolonged ice particle growth at larger aerosol loading, indicating that polluted continental aerosols contain a significant fraction of ice nucleating particles. Similar aerosol-ice relationships are observed for dust aerosols, further corroborating the ice nucleation ability of polluted continental aerosols. By catalyzing ice formation, aerosols from anthropogenic pollution could have profound impacts on cloud lifetime and radiative effect as well as precipitation efficiency. 2019-07-01 2019-08 /pmc/articles/PMC6662716/ /pubmed/31360220 http://dx.doi.org/10.1038/s41561-019-0389-4 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Zhao, Bin Wang, Yuan Gu, Yu Liou, Kuo-Nan Jiang, Jonathan H. Fan, Jiwen Liu, Xiaohong Huang, Lei Yung, Yuk L. Ice nucleation by aerosols from anthropogenic pollution |
title | Ice nucleation by aerosols from anthropogenic
pollution |
title_full | Ice nucleation by aerosols from anthropogenic
pollution |
title_fullStr | Ice nucleation by aerosols from anthropogenic
pollution |
title_full_unstemmed | Ice nucleation by aerosols from anthropogenic
pollution |
title_short | Ice nucleation by aerosols from anthropogenic
pollution |
title_sort | ice nucleation by aerosols from anthropogenic
pollution |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662716/ https://www.ncbi.nlm.nih.gov/pubmed/31360220 http://dx.doi.org/10.1038/s41561-019-0389-4 |
work_keys_str_mv | AT zhaobin icenucleationbyaerosolsfromanthropogenicpollution AT wangyuan icenucleationbyaerosolsfromanthropogenicpollution AT guyu icenucleationbyaerosolsfromanthropogenicpollution AT lioukuonan icenucleationbyaerosolsfromanthropogenicpollution AT jiangjonathanh icenucleationbyaerosolsfromanthropogenicpollution AT fanjiwen icenucleationbyaerosolsfromanthropogenicpollution AT liuxiaohong icenucleationbyaerosolsfromanthropogenicpollution AT huanglei icenucleationbyaerosolsfromanthropogenicpollution AT yungyukl icenucleationbyaerosolsfromanthropogenicpollution |