Cargando…

Quantum tomography of electrical currents

In quantum nanoelectronics, time-dependent electrical currents are built from few elementary excitations emitted with well-defined wavefunctions. However, despite the realization of sources generating quantized numbers of excitations, and despite the development of the theoretical framework of time-...

Descripción completa

Detalles Bibliográficos
Autores principales: Bisognin, R., Marguerite, A., Roussel, B., Kumar, M., Cabart, C., Chapdelaine, C., Mohammad-Djafari, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Gennser, U., Jin, Y., Degiovanni, P., Fève, G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662746/
https://www.ncbi.nlm.nih.gov/pubmed/31358764
http://dx.doi.org/10.1038/s41467-019-11369-5
Descripción
Sumario:In quantum nanoelectronics, time-dependent electrical currents are built from few elementary excitations emitted with well-defined wavefunctions. However, despite the realization of sources generating quantized numbers of excitations, and despite the development of the theoretical framework of time-dependent quantum electronics, extracting electron and hole wavefunctions from electrical currents has so far remained out of reach, both at the theoretical and experimental levels. In this work, we demonstrate a quantum tomography protocol which extracts the generated electron and hole wavefunctions and their emission probabilities from any electrical current. It combines two-particle interferometry with signal processing. Using our technique, we extract the wavefunctions generated by trains of Lorentzian pulses carrying one or two electrons. By demonstrating the synthesis and complete characterization of electronic wavefunctions in conductors, this work offers perspectives for quantum information processing with electrical currents and for investigating basic quantum physics in many-body systems.