Cargando…
Double-deep Q-learning to increase the efficiency of metasurface holograms
We use a double deep Q-learning network (DDQN) to find the right material type and the optimal geometrical design for metasurface holograms to reach high efficiency. The DDQN acts like an intelligent sweep and could identify the optimal results in ~5.7 billion states after only 2169 steps. The optim...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662763/ https://www.ncbi.nlm.nih.gov/pubmed/31358783 http://dx.doi.org/10.1038/s41598-019-47154-z |