Cargando…
Synchrony of nitrogen supply and crop demand are driven via high maize density in maize/pea strip intercropping
Cereal density may influence the balance between nitrogen (N) supply and crop N demand in cereal/legume intercrop systems. The effect of maize (Zea mays L.) plant density on N utilization and N fertilizer supply in maize/pea (Pisum sativum L.) strip intercropping was evaluated in a field study with...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662835/ https://www.ncbi.nlm.nih.gov/pubmed/31358903 http://dx.doi.org/10.1038/s41598-019-47554-1 |
Sumario: | Cereal density may influence the balance between nitrogen (N) supply and crop N demand in cereal/legume intercrop systems. The effect of maize (Zea mays L.) plant density on N utilization and N fertilizer supply in maize/pea (Pisum sativum L.) strip intercropping was evaluated in a field study with sole maize, sole pea, and intercropped maize/pea with three maize densities (D1, 45,000 plants ha(−1); D2, 52,500 plants ha(−1); D3, 60,000 plants ha(−1)) and two N treatments (N0, 0 kg N ha(−1); N1, 450 kg N ha(−1) for maize and 225 kg N ha(−1) for pea). Soil mineral N in intercropped strips decreased with increased maize density. Increased maize density decreased N accumulation for intercropped pea but increased it for maize and the sum of both intercrops. The land equivalent ratio for grain yield (LER grain) showed a 24–30% advantage for intercrops than corresponding sole crops, and was greater with D3 than D1 and D2. Maize/pea intercropping had 4–113% greater nitrogen use efficiency (NUE) than sole maize, which was enhanced with increased maize density. Increasing maize density improved the synchrony of N supply and crop demand in maize/pea strip intercropping. |
---|