Cargando…

Effects of temperature and water turbulence on vertebral number and body shape in Astyanax mexicanus (Teleostei: Characidae)

Environmental changes can modify the phenotypic characteristics of populations, which in turn can influence their evolutionary trajectories. In ectotherms like fishes, temperature is a particularly important environmental variable that is known to have significant impacts on the phenotype. Here, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Reyes Corral, Winer Daniel, Aguirre, Windsor E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6663064/
https://www.ncbi.nlm.nih.gov/pubmed/31356643
http://dx.doi.org/10.1371/journal.pone.0219677
Descripción
Sumario:Environmental changes can modify the phenotypic characteristics of populations, which in turn can influence their evolutionary trajectories. In ectotherms like fishes, temperature is a particularly important environmental variable that is known to have significant impacts on the phenotype. Here, we raised specimens of the surface ecomorph of Astyanax mexicanus at temperatures of 20°C, 23°C, 25°C, and 28°C to examine how temperature influenced vertebral number and body shape. To increase biological realism, specimens were also subjected to two water turbulence regimes. Vertebral number was counted from x-rays and body shape variation was analysed using geometric morphometric methods. Temperature significantly impacted mean total vertebral number, which increased at the lowest and highest temperatures. Fish reared at lower temperatures had relatively more precaudal vertebrae while fish reared at higher temperatures had relatively more caudal vertebrae. Vertebral anomalies, especially vertebral fusions, were most frequent at the extreme temperature treatments. Temperature significantly impacted body shape as well, with fish reared at 20°C being particularly divergent. Water turbulence also impacted body shape in a generally predictable manner, with specimens reared in high turbulence environments being more streamlined and having extended dorsal and anal fin bases. Variation in environmental variables thus resulted in significant changes in morphological traits known to impact fish fitness, indicating that A. mexicanus has the capacity to exhibit a range of phenotypic plasticity when challenged by environmental change. Understanding the biochemical mechanisms underlying this plasticity and whether adaptive plasticity has influenced the evolutionary radiation of the Characidae, are major directions for future research.