Cargando…
Large-scale directed network inference with multivariate transfer entropy and hierarchical statistical testing
Network inference algorithms are valuable tools for the study of large-scale neuroimaging datasets. Multivariate transfer entropy is well suited for this task, being a model-free measure that captures nonlinear and lagged dependencies between time series to infer a minimal directed network model. Gr...
Autores principales: | Novelli, Leonardo, Wollstadt, Patricia, Mediano, Pedro, Wibral, Michael, Lizier, Joseph T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6663300/ https://www.ncbi.nlm.nih.gov/pubmed/31410382 http://dx.doi.org/10.1162/netn_a_00092 |
Ejemplares similares
-
Inferring network properties from time series using transfer entropy and mutual information: Validation of multivariate versus bivariate approaches
por: Novelli, Leonardo, et al.
Publicado: (2021) -
Inferring effective computational connectivity using incrementally conditioned multivariate transfer entropy
por: Lizier, Joseph T, et al.
Publicado: (2013) -
Efficient Transfer Entropy Analysis of Non-Stationary Neural Time Series
por: Wollstadt, Patricia, et al.
Publicado: (2014) -
happi: a hierarchical approach to pangenomics inference
por: Trinh, Pauline, et al.
Publicado: (2023) -
Multivariate statistical inference
por: Giri, Narayan C, et al.
Publicado: (1977)