Cargando…
The importance of the whole: Topological data analysis for the network neuroscientist
Data analysis techniques from network science have fundamentally improved our understanding of neural systems and the complex behaviors that they support. Yet the restriction of network techniques to the study of pairwise interactions prevents us from taking into account intrinsic topological featur...
Autores principales: | Sizemore, Ann E., Phillips-Cremins, Jennifer E., Ghrist, Robert, Bassett, Danielle S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6663305/ https://www.ncbi.nlm.nih.gov/pubmed/31410372 http://dx.doi.org/10.1162/netn_a_00073 |
Ejemplares similares
-
Two’s company, three (or more) is a simplex: Algebraic-topological tools for understanding higher-order structure in neural data
por: Giusti, Chad, et al.
Publicado: (2016) -
A subset of topologically associating domains fold into mesoscale core-periphery networks
por: Huang, Harvey, et al.
Publicado: (2019) -
On the Nature of Explanations Offered by Network Science: A Perspective From and for Practicing Neuroscientists
por: Bertolero, Maxwell A., et al.
Publicado: (2020) -
Social network analysis for social neuroscientists
por: Baek, Elisa C, et al.
Publicado: (2020) -
Why the study of comparative psychology is important to neuroscientists
por: Abramson, Charles I.
Publicado: (2023)