Cargando…
Functional control of electrophysiological network architecture using direct neurostimulation in humans
Chronically implantable neurostimulation devices are becoming a clinically viable option for treating patients with neurological disease and psychiatric disorders. Neurostimulation offers the ability to probe and manipulate distributed networks of interacting brain areas in dysfunctional circuits. H...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6663306/ https://www.ncbi.nlm.nih.gov/pubmed/31410383 http://dx.doi.org/10.1162/netn_a_00089 |
_version_ | 1783439781028429824 |
---|---|
author | Khambhati, Ankit N. Kahn, Ari E. Costantini, Julia Ezzyat, Youssef Solomon, Ethan A. Gross, Robert E. Jobst, Barbara C. Sheth, Sameer A. Zaghloul, Kareem A. Worrell, Gregory Seger, Sarah Lega, Bradley C. Weiss, Shennan Sperling, Michael R. Gorniak, Richard Das, Sandhitsu R. Stein, Joel M. Rizzuto, Daniel S. Kahana, Michael J. Lucas, Timothy H. Davis, Kathryn A. Tracy, Joseph I. Bassett, Danielle S. |
author_facet | Khambhati, Ankit N. Kahn, Ari E. Costantini, Julia Ezzyat, Youssef Solomon, Ethan A. Gross, Robert E. Jobst, Barbara C. Sheth, Sameer A. Zaghloul, Kareem A. Worrell, Gregory Seger, Sarah Lega, Bradley C. Weiss, Shennan Sperling, Michael R. Gorniak, Richard Das, Sandhitsu R. Stein, Joel M. Rizzuto, Daniel S. Kahana, Michael J. Lucas, Timothy H. Davis, Kathryn A. Tracy, Joseph I. Bassett, Danielle S. |
author_sort | Khambhati, Ankit N. |
collection | PubMed |
description | Chronically implantable neurostimulation devices are becoming a clinically viable option for treating patients with neurological disease and psychiatric disorders. Neurostimulation offers the ability to probe and manipulate distributed networks of interacting brain areas in dysfunctional circuits. Here, we use tools from network control theory to examine the dynamic reconfiguration of functionally interacting neuronal ensembles during targeted neurostimulation of cortical and subcortical brain structures. By integrating multimodal intracranial recordings and diffusion-weighted imaging from patients with drug-resistant epilepsy, we test hypothesized structural and functional rules that predict altered patterns of synchronized local field potentials. We demonstrate the ability to predictably reconfigure functional interactions depending on stimulation strength and location. Stimulation of areas with structurally weak connections largely modulates the functional hubness of downstream areas and concurrently propels the brain towards more difficult-to-reach dynamical states. By using focal perturbations to bridge large-scale structure, function, and markers of behavior, our findings suggest that stimulation may be tuned to influence different scales of network interactions driving cognition. |
format | Online Article Text |
id | pubmed-6663306 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MIT Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-66633062019-08-13 Functional control of electrophysiological network architecture using direct neurostimulation in humans Khambhati, Ankit N. Kahn, Ari E. Costantini, Julia Ezzyat, Youssef Solomon, Ethan A. Gross, Robert E. Jobst, Barbara C. Sheth, Sameer A. Zaghloul, Kareem A. Worrell, Gregory Seger, Sarah Lega, Bradley C. Weiss, Shennan Sperling, Michael R. Gorniak, Richard Das, Sandhitsu R. Stein, Joel M. Rizzuto, Daniel S. Kahana, Michael J. Lucas, Timothy H. Davis, Kathryn A. Tracy, Joseph I. Bassett, Danielle S. Netw Neurosci Research Articles Chronically implantable neurostimulation devices are becoming a clinically viable option for treating patients with neurological disease and psychiatric disorders. Neurostimulation offers the ability to probe and manipulate distributed networks of interacting brain areas in dysfunctional circuits. Here, we use tools from network control theory to examine the dynamic reconfiguration of functionally interacting neuronal ensembles during targeted neurostimulation of cortical and subcortical brain structures. By integrating multimodal intracranial recordings and diffusion-weighted imaging from patients with drug-resistant epilepsy, we test hypothesized structural and functional rules that predict altered patterns of synchronized local field potentials. We demonstrate the ability to predictably reconfigure functional interactions depending on stimulation strength and location. Stimulation of areas with structurally weak connections largely modulates the functional hubness of downstream areas and concurrently propels the brain towards more difficult-to-reach dynamical states. By using focal perturbations to bridge large-scale structure, function, and markers of behavior, our findings suggest that stimulation may be tuned to influence different scales of network interactions driving cognition. MIT Press 2019-07-01 /pmc/articles/PMC6663306/ /pubmed/31410383 http://dx.doi.org/10.1162/netn_a_00089 Text en © 2019 Massachusetts Institute of Technology This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode. |
spellingShingle | Research Articles Khambhati, Ankit N. Kahn, Ari E. Costantini, Julia Ezzyat, Youssef Solomon, Ethan A. Gross, Robert E. Jobst, Barbara C. Sheth, Sameer A. Zaghloul, Kareem A. Worrell, Gregory Seger, Sarah Lega, Bradley C. Weiss, Shennan Sperling, Michael R. Gorniak, Richard Das, Sandhitsu R. Stein, Joel M. Rizzuto, Daniel S. Kahana, Michael J. Lucas, Timothy H. Davis, Kathryn A. Tracy, Joseph I. Bassett, Danielle S. Functional control of electrophysiological network architecture using direct neurostimulation in humans |
title | Functional control of electrophysiological network architecture using direct neurostimulation in humans |
title_full | Functional control of electrophysiological network architecture using direct neurostimulation in humans |
title_fullStr | Functional control of electrophysiological network architecture using direct neurostimulation in humans |
title_full_unstemmed | Functional control of electrophysiological network architecture using direct neurostimulation in humans |
title_short | Functional control of electrophysiological network architecture using direct neurostimulation in humans |
title_sort | functional control of electrophysiological network architecture using direct neurostimulation in humans |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6663306/ https://www.ncbi.nlm.nih.gov/pubmed/31410383 http://dx.doi.org/10.1162/netn_a_00089 |
work_keys_str_mv | AT khambhatiankitn functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT kahnarie functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT costantinijulia functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT ezzyatyoussef functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT solomonethana functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT grossroberte functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT jobstbarbarac functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT shethsameera functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT zaghloulkareema functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT worrellgregory functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT segersarah functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT legabradleyc functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT weissshennan functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT sperlingmichaelr functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT gorniakrichard functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT dassandhitsur functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT steinjoelm functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT rizzutodaniels functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT kahanamichaelj functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT lucastimothyh functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT daviskathryna functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT tracyjosephi functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans AT bassettdanielles functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans |