Cargando…

Functional control of electrophysiological network architecture using direct neurostimulation in humans

Chronically implantable neurostimulation devices are becoming a clinically viable option for treating patients with neurological disease and psychiatric disorders. Neurostimulation offers the ability to probe and manipulate distributed networks of interacting brain areas in dysfunctional circuits. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Khambhati, Ankit N., Kahn, Ari E., Costantini, Julia, Ezzyat, Youssef, Solomon, Ethan A., Gross, Robert E., Jobst, Barbara C., Sheth, Sameer A., Zaghloul, Kareem A., Worrell, Gregory, Seger, Sarah, Lega, Bradley C., Weiss, Shennan, Sperling, Michael R., Gorniak, Richard, Das, Sandhitsu R., Stein, Joel M., Rizzuto, Daniel S., Kahana, Michael J., Lucas, Timothy H., Davis, Kathryn A., Tracy, Joseph I., Bassett, Danielle S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MIT Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6663306/
https://www.ncbi.nlm.nih.gov/pubmed/31410383
http://dx.doi.org/10.1162/netn_a_00089
_version_ 1783439781028429824
author Khambhati, Ankit N.
Kahn, Ari E.
Costantini, Julia
Ezzyat, Youssef
Solomon, Ethan A.
Gross, Robert E.
Jobst, Barbara C.
Sheth, Sameer A.
Zaghloul, Kareem A.
Worrell, Gregory
Seger, Sarah
Lega, Bradley C.
Weiss, Shennan
Sperling, Michael R.
Gorniak, Richard
Das, Sandhitsu R.
Stein, Joel M.
Rizzuto, Daniel S.
Kahana, Michael J.
Lucas, Timothy H.
Davis, Kathryn A.
Tracy, Joseph I.
Bassett, Danielle S.
author_facet Khambhati, Ankit N.
Kahn, Ari E.
Costantini, Julia
Ezzyat, Youssef
Solomon, Ethan A.
Gross, Robert E.
Jobst, Barbara C.
Sheth, Sameer A.
Zaghloul, Kareem A.
Worrell, Gregory
Seger, Sarah
Lega, Bradley C.
Weiss, Shennan
Sperling, Michael R.
Gorniak, Richard
Das, Sandhitsu R.
Stein, Joel M.
Rizzuto, Daniel S.
Kahana, Michael J.
Lucas, Timothy H.
Davis, Kathryn A.
Tracy, Joseph I.
Bassett, Danielle S.
author_sort Khambhati, Ankit N.
collection PubMed
description Chronically implantable neurostimulation devices are becoming a clinically viable option for treating patients with neurological disease and psychiatric disorders. Neurostimulation offers the ability to probe and manipulate distributed networks of interacting brain areas in dysfunctional circuits. Here, we use tools from network control theory to examine the dynamic reconfiguration of functionally interacting neuronal ensembles during targeted neurostimulation of cortical and subcortical brain structures. By integrating multimodal intracranial recordings and diffusion-weighted imaging from patients with drug-resistant epilepsy, we test hypothesized structural and functional rules that predict altered patterns of synchronized local field potentials. We demonstrate the ability to predictably reconfigure functional interactions depending on stimulation strength and location. Stimulation of areas with structurally weak connections largely modulates the functional hubness of downstream areas and concurrently propels the brain towards more difficult-to-reach dynamical states. By using focal perturbations to bridge large-scale structure, function, and markers of behavior, our findings suggest that stimulation may be tuned to influence different scales of network interactions driving cognition.
format Online
Article
Text
id pubmed-6663306
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MIT Press
record_format MEDLINE/PubMed
spelling pubmed-66633062019-08-13 Functional control of electrophysiological network architecture using direct neurostimulation in humans Khambhati, Ankit N. Kahn, Ari E. Costantini, Julia Ezzyat, Youssef Solomon, Ethan A. Gross, Robert E. Jobst, Barbara C. Sheth, Sameer A. Zaghloul, Kareem A. Worrell, Gregory Seger, Sarah Lega, Bradley C. Weiss, Shennan Sperling, Michael R. Gorniak, Richard Das, Sandhitsu R. Stein, Joel M. Rizzuto, Daniel S. Kahana, Michael J. Lucas, Timothy H. Davis, Kathryn A. Tracy, Joseph I. Bassett, Danielle S. Netw Neurosci Research Articles Chronically implantable neurostimulation devices are becoming a clinically viable option for treating patients with neurological disease and psychiatric disorders. Neurostimulation offers the ability to probe and manipulate distributed networks of interacting brain areas in dysfunctional circuits. Here, we use tools from network control theory to examine the dynamic reconfiguration of functionally interacting neuronal ensembles during targeted neurostimulation of cortical and subcortical brain structures. By integrating multimodal intracranial recordings and diffusion-weighted imaging from patients with drug-resistant epilepsy, we test hypothesized structural and functional rules that predict altered patterns of synchronized local field potentials. We demonstrate the ability to predictably reconfigure functional interactions depending on stimulation strength and location. Stimulation of areas with structurally weak connections largely modulates the functional hubness of downstream areas and concurrently propels the brain towards more difficult-to-reach dynamical states. By using focal perturbations to bridge large-scale structure, function, and markers of behavior, our findings suggest that stimulation may be tuned to influence different scales of network interactions driving cognition. MIT Press 2019-07-01 /pmc/articles/PMC6663306/ /pubmed/31410383 http://dx.doi.org/10.1162/netn_a_00089 Text en © 2019 Massachusetts Institute of Technology This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.
spellingShingle Research Articles
Khambhati, Ankit N.
Kahn, Ari E.
Costantini, Julia
Ezzyat, Youssef
Solomon, Ethan A.
Gross, Robert E.
Jobst, Barbara C.
Sheth, Sameer A.
Zaghloul, Kareem A.
Worrell, Gregory
Seger, Sarah
Lega, Bradley C.
Weiss, Shennan
Sperling, Michael R.
Gorniak, Richard
Das, Sandhitsu R.
Stein, Joel M.
Rizzuto, Daniel S.
Kahana, Michael J.
Lucas, Timothy H.
Davis, Kathryn A.
Tracy, Joseph I.
Bassett, Danielle S.
Functional control of electrophysiological network architecture using direct neurostimulation in humans
title Functional control of electrophysiological network architecture using direct neurostimulation in humans
title_full Functional control of electrophysiological network architecture using direct neurostimulation in humans
title_fullStr Functional control of electrophysiological network architecture using direct neurostimulation in humans
title_full_unstemmed Functional control of electrophysiological network architecture using direct neurostimulation in humans
title_short Functional control of electrophysiological network architecture using direct neurostimulation in humans
title_sort functional control of electrophysiological network architecture using direct neurostimulation in humans
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6663306/
https://www.ncbi.nlm.nih.gov/pubmed/31410383
http://dx.doi.org/10.1162/netn_a_00089
work_keys_str_mv AT khambhatiankitn functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT kahnarie functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT costantinijulia functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT ezzyatyoussef functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT solomonethana functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT grossroberte functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT jobstbarbarac functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT shethsameera functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT zaghloulkareema functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT worrellgregory functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT segersarah functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT legabradleyc functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT weissshennan functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT sperlingmichaelr functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT gorniakrichard functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT dassandhitsur functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT steinjoelm functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT rizzutodaniels functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT kahanamichaelj functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT lucastimothyh functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT daviskathryna functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT tracyjosephi functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans
AT bassettdanielles functionalcontrolofelectrophysiologicalnetworkarchitectureusingdirectneurostimulationinhumans