Cargando…

Electrostatic lateral interactions drive ESCRT-III heteropolymer assembly

Self-assembly of ESCRT-III complex is a critical step in all ESCRT-dependent events. ESCRT-III hetero-polymers adopt variable architectures, but the mechanisms of inter-subunit recognition in these hetero-polymers to create flexible architectures remain unclear. We demonstrate in vivo and in vitro t...

Descripción completa

Detalles Bibliográficos
Autores principales: Banjade, Sudeep, Tang, Shaogeng, Shah, Yousuf H, Emr, Scott D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6663469/
https://www.ncbi.nlm.nih.gov/pubmed/31246173
http://dx.doi.org/10.7554/eLife.46207
_version_ 1783439782602342400
author Banjade, Sudeep
Tang, Shaogeng
Shah, Yousuf H
Emr, Scott D
author_facet Banjade, Sudeep
Tang, Shaogeng
Shah, Yousuf H
Emr, Scott D
author_sort Banjade, Sudeep
collection PubMed
description Self-assembly of ESCRT-III complex is a critical step in all ESCRT-dependent events. ESCRT-III hetero-polymers adopt variable architectures, but the mechanisms of inter-subunit recognition in these hetero-polymers to create flexible architectures remain unclear. We demonstrate in vivo and in vitro that the Saccharomyces cerevisiae ESCRT-III subunit Snf7 uses a conserved acidic helix to recruit its partner Vps24. Charge-inversion mutations in this helix inhibit Snf7-Vps24 lateral interactions in the polymer, while rebalancing the charges rescues the functional defects. These data suggest that Snf7-Vps24 assembly occurs through electrostatic interactions on one surface, rather than through residue-to-residue specificity. We propose a model in which these cooperative electrostatic interactions in the polymer propagate to allow for specific inter-subunit recognition, while sliding of laterally interacting polymers enable changes in architecture at distinct stages of vesicle biogenesis. Our data suggest a mechanism by which interaction specificity and polymer flexibility can be coupled in membrane-remodeling heteropolymeric assemblies.
format Online
Article
Text
id pubmed-6663469
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-66634692019-07-31 Electrostatic lateral interactions drive ESCRT-III heteropolymer assembly Banjade, Sudeep Tang, Shaogeng Shah, Yousuf H Emr, Scott D eLife Biochemistry and Chemical Biology Self-assembly of ESCRT-III complex is a critical step in all ESCRT-dependent events. ESCRT-III hetero-polymers adopt variable architectures, but the mechanisms of inter-subunit recognition in these hetero-polymers to create flexible architectures remain unclear. We demonstrate in vivo and in vitro that the Saccharomyces cerevisiae ESCRT-III subunit Snf7 uses a conserved acidic helix to recruit its partner Vps24. Charge-inversion mutations in this helix inhibit Snf7-Vps24 lateral interactions in the polymer, while rebalancing the charges rescues the functional defects. These data suggest that Snf7-Vps24 assembly occurs through electrostatic interactions on one surface, rather than through residue-to-residue specificity. We propose a model in which these cooperative electrostatic interactions in the polymer propagate to allow for specific inter-subunit recognition, while sliding of laterally interacting polymers enable changes in architecture at distinct stages of vesicle biogenesis. Our data suggest a mechanism by which interaction specificity and polymer flexibility can be coupled in membrane-remodeling heteropolymeric assemblies. eLife Sciences Publications, Ltd 2019-06-27 /pmc/articles/PMC6663469/ /pubmed/31246173 http://dx.doi.org/10.7554/eLife.46207 Text en © 2019, Banjade et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Biochemistry and Chemical Biology
Banjade, Sudeep
Tang, Shaogeng
Shah, Yousuf H
Emr, Scott D
Electrostatic lateral interactions drive ESCRT-III heteropolymer assembly
title Electrostatic lateral interactions drive ESCRT-III heteropolymer assembly
title_full Electrostatic lateral interactions drive ESCRT-III heteropolymer assembly
title_fullStr Electrostatic lateral interactions drive ESCRT-III heteropolymer assembly
title_full_unstemmed Electrostatic lateral interactions drive ESCRT-III heteropolymer assembly
title_short Electrostatic lateral interactions drive ESCRT-III heteropolymer assembly
title_sort electrostatic lateral interactions drive escrt-iii heteropolymer assembly
topic Biochemistry and Chemical Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6663469/
https://www.ncbi.nlm.nih.gov/pubmed/31246173
http://dx.doi.org/10.7554/eLife.46207
work_keys_str_mv AT banjadesudeep electrostaticlateralinteractionsdriveescrtiiiheteropolymerassembly
AT tangshaogeng electrostaticlateralinteractionsdriveescrtiiiheteropolymerassembly
AT shahyousufh electrostaticlateralinteractionsdriveescrtiiiheteropolymerassembly
AT emrscottd electrostaticlateralinteractionsdriveescrtiiiheteropolymerassembly