Cargando…

Toll-like receptor homolog TOL-1 regulates Bifidobacterium infantis-elicited longevity and behavior in Caenorhabditis elegans

Bifidobacterium infantis, a Gram-positive bacterium, is one of the commonly used probiotics. We previously showed that B. infantis modified host defense systems and extended the lifespan of the nematode Caenorhabditis elegans. In the present study, we showed that the lifespan extension caused by B....

Descripción completa

Detalles Bibliográficos
Autores principales: SUN, Simo, MIZUNO, Yasuko, KOMURA, Tomomi, NISHIKAWA, Yoshikazu, KAGE-NAKADAI, Eriko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMFH Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6663507/
https://www.ncbi.nlm.nih.gov/pubmed/31384522
http://dx.doi.org/10.12938/bmfh.18-031
Descripción
Sumario:Bifidobacterium infantis, a Gram-positive bacterium, is one of the commonly used probiotics. We previously showed that B. infantis modified host defense systems and extended the lifespan of the nematode Caenorhabditis elegans. In the present study, we showed that the lifespan extension caused by B. infantis was enhanced in animals having a mutation in the tol-1 gene that encodes the sole C. elegans homolog of Toll-like receptors (TLRs). Meanwhile, lifespan increased by other probiotic bacteria, such as Bacillus subtilis or Clostridium butyricum, was not affected in the tol-1 mutant animals. A microarray analysis revealed that the expression of innate immune response-related genes was significantly increased in the tol-1 mutant. Worms with the tol-1 mutation exhibited reduced leaving behavior from the B. infantis lawn, while canonical downstream factors trf-1/TRAF and ikb-1/IκB appeared to not be involved. In conclusion, C. elegans tol-1/TLR regulates B. infantis-induced longevity and also regulates behavior against B. infantis.