Cargando…

Densification of coal fines and mildly torrefied biomass into composite fuel using different organic binders

Coal processing industries generate millions of tons of fines (<3 mm) during mining operation and are often considered as wastes. These wastes have enormous potential in serving as energy and metallurgical operation feedstock. One avenue for its use is densification into briquettes or pelletizes....

Descripción completa

Detalles Bibliográficos
Autores principales: Adeleke, A.A., Odusote, J.K., Lasode, O.A., Ikubanni, P.P., Malathi, M., Paswan, D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664039/
https://www.ncbi.nlm.nih.gov/pubmed/31384690
http://dx.doi.org/10.1016/j.heliyon.2019.e02160
Descripción
Sumario:Coal processing industries generate millions of tons of fines (<3 mm) during mining operation and are often considered as wastes. These wastes have enormous potential in serving as energy and metallurgical operation feedstock. One avenue for its use is densification into briquettes or pelletizes. Various briquetting techniques have been adopted in the past few decades; however, the main issues upfront in commercializing these techniques are significant binder cost and poor mechanical integrity. Therefore, the present study concentrates on utilizing commonly available organic binder along with pretreated biomass in developing coal fine briquettes. Briquettes were produced after initial pretreatment of the raw materials under a load of 2 tons. Briquettes were cured in an inert environment and eventually characterized for its main litmus requirements (physical properties). It was observed that pitch-molasses bonded briquettes have better physical properties leading to good mechanical integrity than briquettes produced from individual binder. The proximate, ultimate and calorific value analyses of the briquettes do not deteriorate but mildly improved compared to the raw coal fines. With a density of 1.18–1.32 g/cm(3), drop to fracture that is greater than 100 (times/2 m), impact resistance index well above 6000, water resistance index of 99% and cold crushing strength of 9 MPa, pitch-molasses bonded briquettes clearly surpassed recommended physical properties benchmarked for briquettes of industrial and domestic end use. The physical properties of the briquettes favorably meet requirements as feedstock for rotary kiln direct reduced iron and COREX iron-making processes as well as fuel for thermal operations.