Cargando…
Spatiotemporal Empirical Mode Decomposition of Resting-State fMRI Signals: Application to Global Signal Regression
Resting-state functional connectivity MRI (rs-fcMRI) is a common method for mapping functional brain networks. However, estimation of these networks is affected by the presence of a common global systemic noise, or global signal (GS). Previous studies have shown that the common preprocessing steps o...
Autores principales: | Moradi, Narges, Dousty, Mehdy, Sotero, Roberto C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664052/ https://www.ncbi.nlm.nih.gov/pubmed/31396032 http://dx.doi.org/10.3389/fnins.2019.00736 |
Ejemplares similares
-
Estimation of global and local complexities of brain networks: A random walks approach
por: Sotero, Roberto C., et al.
Publicado: (2020) -
On nodes and modes in resting state fMRI
por: Friston, Karl J., et al.
Publicado: (2014) -
Editorial: Origins of the Resting-State fMRI Signal
por: Chen, J. Jean, et al.
Publicado: (2020) -
Regression dynamic causal modeling for resting‐state fMRI
por: Frässle, Stefan, et al.
Publicado: (2021) -
Influences of Head Motion Regression on High-Frequency Oscillation Amplitudes of Resting-State fMRI Signals
por: Yuan, Bin-Ke, et al.
Publicado: (2016)