Cargando…
Sparse Coding Using the Locally Competitive Algorithm on the TrueNorth Neurosynaptic System
The Locally Competitive Algorithm (LCA) is a biologically plausible computational architecture for sparse coding, where a signal is represented as a linear combination of elements from an over-complete dictionary. In this paper we map the LCA algorithm on the brain-inspired, IBM TrueNorth Neurosynap...
Autores principales: | Fair, Kaitlin L., Mendat, Daniel R., Andreou, Andreas G., Rozell, Christopher J., Romberg, Justin, Anderson, David V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664083/ https://www.ncbi.nlm.nih.gov/pubmed/31396039 http://dx.doi.org/10.3389/fnins.2019.00754 |
Ejemplares similares
-
A Noise Filtering Algorithm for Event-Based Asynchronous Change Detection Image Sensors on TrueNorth and Its Implementation on TrueNorth
por: Padala, Vandana, et al.
Publicado: (2018) -
Ghrelin mediated regulation of neurosynaptic transmitters in depressive disorders
por: Masule, Milind V., et al.
Publicado: (2022) -
Implementation of Olfactory Bulb Glomerular-Layer Computations in a Digital Neurosynaptic Core
por: Imam, Nabil, et al.
Publicado: (2012) -
REMODEL: Rethinking Deep CNN Models to Detect and Count on a NeuroSynaptic System
por: Shukla, Rohit, et al.
Publicado: (2019) -
Sparse coding models demonstrate some non-classical receptive field effects
por: Zhu, Mengchen, et al.
Publicado: (2010)