Cargando…

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

This study deals with the preparation and characterization of metallic nanoinclusions on the surface of semiconducting Bi(2)Se(3) that could be used for an enhancement of the efficiency of thermoelectric materials. We used Au forming a 1D alloy through diffusion (point nanoinclusion) and Mo forming...

Descripción completa

Detalles Bibliográficos
Autores principales: Knotek, Petr, Plecháček, Tomáš, Smolík, Jan, Kutálek, Petr, Dvořák, Filip, Vlček, Milan, Navrátil, Jiří, Drašar, Čestmír
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664417/
https://www.ncbi.nlm.nih.gov/pubmed/31431852
http://dx.doi.org/10.3762/bjnano.10.138
_version_ 1783439882363863040
author Knotek, Petr
Plecháček, Tomáš
Smolík, Jan
Kutálek, Petr
Dvořák, Filip
Vlček, Milan
Navrátil, Jiří
Drašar, Čestmír
author_facet Knotek, Petr
Plecháček, Tomáš
Smolík, Jan
Kutálek, Petr
Dvořák, Filip
Vlček, Milan
Navrátil, Jiří
Drašar, Čestmír
author_sort Knotek, Petr
collection PubMed
description This study deals with the preparation and characterization of metallic nanoinclusions on the surface of semiconducting Bi(2)Se(3) that could be used for an enhancement of the efficiency of thermoelectric materials. We used Au forming a 1D alloy through diffusion (point nanoinclusion) and Mo forming thermodynamically stable layered MoSe(2) nanosheets through the reaction with the Bi(2)Se(3). The Schottky barrier formed by the 1D and 2D nanoinclusions was characterized by means of atomic force microscopy (AFM). We used Kelvin probe force microscopy (KPFM) in ambient atmosphere at the nanoscale and compared the results to those of ultraviolet photoelectron spectroscopy (UPS) in UHV at the macroscale. The existence of the Schottky barrier was demonstrated at +120 meV for the Mo layer and −80 meV for the Au layer reflecting the formation of MoSe(2) and Au/Bi(2)Se(3) alloy, respectively. The results of both methods (KPFM and UPS) were in good agreement. We revealed that long-time exposure (tens of seconds) to the electrical field leads to deep oxidation and the formation of perturbations greater than 1 µm in height, which hinder the I–V measurements.
format Online
Article
Text
id pubmed-6664417
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Beilstein-Institut
record_format MEDLINE/PubMed
spelling pubmed-66644172019-08-20 Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere Knotek, Petr Plecháček, Tomáš Smolík, Jan Kutálek, Petr Dvořák, Filip Vlček, Milan Navrátil, Jiří Drašar, Čestmír Beilstein J Nanotechnol Full Research Paper This study deals with the preparation and characterization of metallic nanoinclusions on the surface of semiconducting Bi(2)Se(3) that could be used for an enhancement of the efficiency of thermoelectric materials. We used Au forming a 1D alloy through diffusion (point nanoinclusion) and Mo forming thermodynamically stable layered MoSe(2) nanosheets through the reaction with the Bi(2)Se(3). The Schottky barrier formed by the 1D and 2D nanoinclusions was characterized by means of atomic force microscopy (AFM). We used Kelvin probe force microscopy (KPFM) in ambient atmosphere at the nanoscale and compared the results to those of ultraviolet photoelectron spectroscopy (UPS) in UHV at the macroscale. The existence of the Schottky barrier was demonstrated at +120 meV for the Mo layer and −80 meV for the Au layer reflecting the formation of MoSe(2) and Au/Bi(2)Se(3) alloy, respectively. The results of both methods (KPFM and UPS) were in good agreement. We revealed that long-time exposure (tens of seconds) to the electrical field leads to deep oxidation and the formation of perturbations greater than 1 µm in height, which hinder the I–V measurements. Beilstein-Institut 2019-07-15 /pmc/articles/PMC6664417/ /pubmed/31431852 http://dx.doi.org/10.3762/bjnano.10.138 Text en Copyright © 2019, Knotek et al. https://creativecommons.org/licenses/by/4.0https://www.beilstein-journals.org/bjnano/termsThis is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the authors and source are credited. The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms)
spellingShingle Full Research Paper
Knotek, Petr
Plecháček, Tomáš
Smolík, Jan
Kutálek, Petr
Dvořák, Filip
Vlček, Milan
Navrátil, Jiří
Drašar, Čestmír
Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere
title Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere
title_full Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere
title_fullStr Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere
title_full_unstemmed Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere
title_short Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere
title_sort kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere
topic Full Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664417/
https://www.ncbi.nlm.nih.gov/pubmed/31431852
http://dx.doi.org/10.3762/bjnano.10.138
work_keys_str_mv AT knotekpetr kelvinprobeforcemicroscopyofthenanoscaleelectricalsurfacepotentialbarrierofmetalsemiconductorinterfacesinambientatmosphere
AT plechacektomas kelvinprobeforcemicroscopyofthenanoscaleelectricalsurfacepotentialbarrierofmetalsemiconductorinterfacesinambientatmosphere
AT smolikjan kelvinprobeforcemicroscopyofthenanoscaleelectricalsurfacepotentialbarrierofmetalsemiconductorinterfacesinambientatmosphere
AT kutalekpetr kelvinprobeforcemicroscopyofthenanoscaleelectricalsurfacepotentialbarrierofmetalsemiconductorinterfacesinambientatmosphere
AT dvorakfilip kelvinprobeforcemicroscopyofthenanoscaleelectricalsurfacepotentialbarrierofmetalsemiconductorinterfacesinambientatmosphere
AT vlcekmilan kelvinprobeforcemicroscopyofthenanoscaleelectricalsurfacepotentialbarrierofmetalsemiconductorinterfacesinambientatmosphere
AT navratiljiri kelvinprobeforcemicroscopyofthenanoscaleelectricalsurfacepotentialbarrierofmetalsemiconductorinterfacesinambientatmosphere
AT drasarcestmir kelvinprobeforcemicroscopyofthenanoscaleelectricalsurfacepotentialbarrierofmetalsemiconductorinterfacesinambientatmosphere