Cargando…
Dual CNN for Relation Extraction with Knowledge-Based Attention and Word Embeddings
Relation extraction is the underlying critical task of textual understanding. However, the existing methods currently have defects in instance selection and lack background knowledge for entity recognition. In this paper, we propose a knowledge-based attention model, which can make full use of super...
Autores principales: | Li, Jun, Huang, Guimin, Chen, Jianheng, Wang, Yabing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664687/ https://www.ncbi.nlm.nih.gov/pubmed/31396271 http://dx.doi.org/10.1155/2019/6789520 |
Ejemplares similares
-
Inductive Document Network Embedding with Topic-Word Attention
por: Brochier, Robin, et al.
Publicado: (2020) -
Evaluating semantic relations in neural word embeddings with biomedical and general domain knowledge bases
por: Chen, Zhiwei, et al.
Publicado: (2018) -
Patch Attention Layer of Embedding Handcrafted Features in CNN for Facial Expression Recognition
por: Liang, Xingcan, et al.
Publicado: (2021) -
Identify novel elements of knowledge with word embedding
por: Yin, Deyun, et al.
Publicado: (2023) -
Correction to: Evaluating semantic relations in neural word embeddings with biomedical and general domain knowledge bases
por: Chen, Zhiwei, et al.
Publicado: (2018)