Cargando…
On the interpretability of machine learning-based model for predicting hypertension
BACKGROUND: Although complex machine learning models are commonly outperforming the traditional simple interpretable models, clinicians find it hard to understand and trust these complex models due to the lack of intuition and explanation of their predictions. The aim of this study to demonstrate th...
Autores principales: | Elshawi, Radwa, Al-Mallah, Mouaz H., Sakr, Sherif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664803/ https://www.ncbi.nlm.nih.gov/pubmed/31357998 http://dx.doi.org/10.1186/s12911-019-0874-0 |
Ejemplares similares
-
Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project
por: Sakr, Sherif, et al.
Publicado: (2018) -
Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project
por: Sakr, Sherif, et al.
Publicado: (2017) -
Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project
por: Alghamdi, Manal, et al.
Publicado: (2017) -
Exploiting time series of Sentinel-1 and Sentinel-2 to detect grassland mowing events using deep learning with reject region
por: Komisarenko, Viacheslav, et al.
Publicado: (2022) -
Patient-level explainable machine learning to predict major adverse cardiovascular events from SPECT MPI and CCTA imaging
por: Alahdab, Fares, et al.
Publicado: (2023)