Cargando…
Mfn2 inhibits proliferation and cell-cycle in Hela cells via Ras-NF-κB signal pathway
BACKGROUND: Mitofusin 2 (Mfn2) is outer membrane protein, as the inhibitor of Ras protein. This study aimed to investigate the effect of Mfn2 on cell proliferation, and cell-cycle in Hela cervical carcinoma cell lines. METHODS: After treated with Adv-mfn2 or Adv-control for 48 h and 60 h, the RNA an...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664827/ https://www.ncbi.nlm.nih.gov/pubmed/31384172 http://dx.doi.org/10.1186/s12935-019-0916-9 |
Sumario: | BACKGROUND: Mitofusin 2 (Mfn2) is outer membrane protein, as the inhibitor of Ras protein. This study aimed to investigate the effect of Mfn2 on cell proliferation, and cell-cycle in Hela cervical carcinoma cell lines. METHODS: After treated with Adv-mfn2 or Adv-control for 48 h and 60 h, the RNA and protein of Mfn2 in Hela cells were detected by qRT-PCR and western blot. The immunofluorescence assay was performed to observe the expression and sub-location of Mfn2 in Hela cells. The flow cytometry was performed to detect the cell cycle of Hela cells, while western blots were performed to observe the Ras-NF-κB signal pathway. Then, the xenografted cervix carcinoma mouse model was used to confirm the effect of Mfn2 in Hela cells in vivo and the expression of Ras-NF-κB signaling pathway in vivo. RESULTS: In immunofluorescence detection, Mfn2 was located in cytoplasmic, not in the nucleus. In addition, Mfn2 inhibited cell proliferation of Hela cells through reducing PCNA protein expression. Mfn2 induced arrest in G0/G1 phase of the cell cycle in Hela cells. Meanwhile, Mfn2 reduced Cyclin D1 protein expression. Moreover, Mfn2 decreased the Ras signal pathway proteins such as Myc, NF-κB p65, STAT3 in a dose-dependent manner. Then, the in vivo experiment also confirmed that Mfn2 could inhibit the tumor growth, and depress the Cyclin D1, Ras, Myc, NF-κB p65, Erk1/2 and mTOR protein expression. CONCLUSIONS: Mfn2 could significantly inhibit cell proliferation in Hela cells. It might be acted as an potential anti-cancer target through inducing cell cycle arrest in human cervical carcinoma cells. |
---|