Cargando…
A principled strategy for mapping enhancers to genes
Mapping enhancers to genes is a fundamental goal of modern biology. We have developed an innovative strategy that maps enhancers to genes in a principled manner. We illustrate its power by applying it to Myrf. Despite being a master regulator of oligodendrocytes, oligodendrocyte enhancers governing...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6667464/ https://www.ncbi.nlm.nih.gov/pubmed/31363138 http://dx.doi.org/10.1038/s41598-019-47521-w |
Sumario: | Mapping enhancers to genes is a fundamental goal of modern biology. We have developed an innovative strategy that maps enhancers to genes in a principled manner. We illustrate its power by applying it to Myrf. Despite being a master regulator of oligodendrocytes, oligodendrocyte enhancers governing Myrf expression remain elusive. Since chromatin conformation capture studies have shown that a gene and its enhancer tend to be found in the same topologically associating domain (TAD), we started with the delineation of the Myrf TAD. A genome-wide map of putative oligodendrocyte enhancers uncovered 6 putative oligodendrocyte enhancers in the Myrf TAD, narrowing down the search space for Myrf enhancers from the entire genome to 6 loci in a principled manner. Epigenome editing experiments revealed that two of them govern Myrf expression for oligodendrocyte development. Our new method is simple, principled, and powerful, providing a systematic way to find enhancers that regulate the expression of a gene of interest. Since it can be applied to most cell types, it would greatly facilitate our effort to unravel transcriptional regulatory networks of diverse cell types. |
---|