Cargando…

Minimally invasive gas embolization using acoustic droplet vaporization in a rodent model of hepatocellular carcinoma

Hepatocellular carcinoma is the third leading cause of cancer-related deaths worldwide. Many patients are not eligible for curative therapies, such as surgical resection of the tumor or a liver transplant. Transarterial embolization is one therapy clinically used in these cases; however, this requir...

Descripción completa

Detalles Bibliográficos
Autores principales: Harmon, Jennifer N., Kabinejadian, Foad, Seda, Robinson, Fabiilli, Mario L., Kuruvilla, Sibu, Kuo, Cathleen C., Greve, Joan M., Fowlkes, J. Brian, Bull, Joseph L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6667465/
https://www.ncbi.nlm.nih.gov/pubmed/31363130
http://dx.doi.org/10.1038/s41598-019-47309-y
Descripción
Sumario:Hepatocellular carcinoma is the third leading cause of cancer-related deaths worldwide. Many patients are not eligible for curative therapies, such as surgical resection of the tumor or a liver transplant. Transarterial embolization is one therapy clinically used in these cases; however, this requires a long procedure and careful placement of an intraarterial catheter. Gas embolization has been proposed as a fast, easily administered, more spatially selective, and less invasive alternative. Here, we demonstrate the feasibility and efficacy of using acoustic droplet vaporization to noninvasively generate gas emboli within vasculature. Intravital microscopy experiments were performed using the rat cremaster muscle to visually observe the formation of occlusions. Large gas emboli were produced within the vasculature in the rat cremaster, effectively occluding blood flow. Following these experiments, the therapeutic efficacy of gas embolization was investigated in an ectopic xenograft model of hepatocellular carcinoma in mice. The treatment group exhibited a significantly lower final tumor volume (ANOVA, p = 0.008) and growth rate than control groups – tumor growth was completely halted. Additionally, treated tumors exhibited significant necrosis as determined by histological analysis. To our knowledge, this study is the first to demonstrate the therapeutic efficacy of gas embolotherapy in a tumor model.