Cargando…

miR-543 acts as a novel oncogene in oral squamous cell carcinoma by targeting CYP3A5

MicroRNAs (miRNAs/miRs) are small non-coding RNAs that can act as oncogenes or tumor-suppressor genes in human cancer. Previous studies have revealed that abnormal expression of miRNAs is closely associated with tumor cell cycle, differentiation, growth and apoptosis. miR-543 is expressed abnormally...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Liping, Chen, Weihong, Zha, Jun, Yan, Yongyong, Wei, Yongxiang, Chen, Xili, Zhu, Xinxin, Ge, Linhu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6667884/
https://www.ncbi.nlm.nih.gov/pubmed/31322243
http://dx.doi.org/10.3892/or.2019.7230
Descripción
Sumario:MicroRNAs (miRNAs/miRs) are small non-coding RNAs that can act as oncogenes or tumor-suppressor genes in human cancer. Previous studies have revealed that abnormal expression of miRNAs is closely associated with tumor cell cycle, differentiation, growth and apoptosis. miR-543 is expressed abnormally in a wide variety of cancers and has been associated with cellular proliferation, apoptosis, and invasion; however, the effect of miR-543 remains unknown in oral squamous cell carcinoma (OSCC). In the present study, the expression level of miR-543 in OSCC cell lines and tissues was investigated by RT-qPCR. A series of experiments was then performed to elucidate the functions of miR-543 in OSCC, such as CCK-8 assay, colony formation assay, flow cytometry, cell cycle distribution assay and cell apoptosis assay and Transwell assay. miR-543 expression was significantly upregulated in tumors from patients with OSCC and in OSCC cell lines. Overexpression of miR-543 promoted the proliferation, invasion and migration of OSCC cell lines, and inhibited cell apoptosis. In addition, the present study identified cytochrome P450 family 3 subfamily A member 5 (CYP3A5) as a direct target of miR-543 using software analysis and dual-luciferase reporter assays. In conclusion, the results of the present study suggest that miR-543 acts as a tumor promoter and serves a vital role in OSCC proliferation and invasion. These results confirm that miR-543 may serve as a potential novel target for the treatment of OSCC.