Cargando…
Stochastic Lanczos estimation of genomic variance components for linear mixed-effects models
BACKGROUND: Linear mixed-effects models (LMM) are a leading method in conducting genome-wide association studies (GWAS) but require residual maximum likelihood (REML) estimation of variance components, which is computationally demanding. Previous work has reduced the computational burden of variance...
Autores principales: | Border, Richard, Becker, Stephen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668092/ https://www.ncbi.nlm.nih.gov/pubmed/31362713 http://dx.doi.org/10.1186/s12859-019-2978-z |
Ejemplares similares
-
A general approach to mixed effects modeling of residual variances in generalized linear mixed models
por: Kizilkaya, Kadir, et al.
Publicado: (2005) -
On non-negative estimation of variance components in mixed linear models
por: El Leithy, Heba A., et al.
Publicado: (2016) -
Multi-allelic haplotype model based on genetic partition for genomic prediction and variance component estimation using SNP markers
por: Da, Yang
Publicado: (2015) -
Genetic heterogeneity of residual variance - estimation of variance components using double hierarchical generalized linear models
por: Rönnegård, Lars, et al.
Publicado: (2010) -
An easy approach to the Robins-Breslow-Greenland variance estimator
por: Silcocks, Paul
Publicado: (2005)