Cargando…
PACES: prediction of N4-acetylcytidine (ac4C) modification sites in mRNA
N4-acetylcytidine (ac4C) is a highly conserved RNA modification and is the first acetylation event described in mRNA. ac4C in mRNA has been demonstrated to be involved in the regulation of mRNA stability, processing and translation, but the exact means by which ac4C works remain unclear. In addition...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668381/ https://www.ncbi.nlm.nih.gov/pubmed/31366994 http://dx.doi.org/10.1038/s41598-019-47594-7 |
Sumario: | N4-acetylcytidine (ac4C) is a highly conserved RNA modification and is the first acetylation event described in mRNA. ac4C in mRNA has been demonstrated to be involved in the regulation of mRNA stability, processing and translation, but the exact means by which ac4C works remain unclear. In addition, ac4C is widely distributed within the human transcriptome at physiologically relevant levels and so far only a small fraction of modified sequences have been detected by experiments. In this study, we developed a predictor of ac4C sites in human mRNA named PACES to help mining possible modified motifs. PACES combines two random forest classifiers, position-specific dinucleotide sequence profile and K-nucleotide frequencies. With genomic sequences as input, PACES gives possible modified sequences based on the training model. PACES is freely available at http://www.rnanut.net/paces/. |
---|