Cargando…
Fast and covariate-adaptive method amplifies detection power in large-scale multiple hypothesis testing
Multiple hypothesis testing is an essential component of modern data science. In many settings, in addition to the p-value, additional covariates for each hypothesis are available, e.g., functional annotation of variants in genome-wide association studies. Such information is ignored by popular mult...
Autores principales: | Zhang, Martin J., Xia, Fei, Zou, James |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668431/ https://www.ncbi.nlm.nih.gov/pubmed/31366926 http://dx.doi.org/10.1038/s41467-019-11247-0 |
Ejemplares similares
-
Data-driven hypothesis weighting increases detection power in genome-scale multiple testing
por: Ignatiadis, Nikolaos, et al.
Publicado: (2016) -
Stouffer’s Test in a Large Scale Simultaneous Hypothesis Testing
por: Kim, Sang Cheol, et al.
Publicado: (2013) -
A large scale test of the gaming-enhancement hypothesis
por: Przybylski, Andrew K., et al.
Publicado: (2016) -
Leveraging biological and statistical covariates improves the detection power in epigenome-wide association testing
por: Huang, Jinyan, et al.
Publicado: (2020) -
The cost of large numbers of hypothesis tests on power, effect size and sample size
por: Lazzeroni, L C, et al.
Publicado: (2012)