Cargando…
Time-reversal symmetry breaking type-II Weyl state in YbMnBi(2)
Spectroscopic detection of Dirac and Weyl fermions in real materials is vital for both, promising applications and fundamental bridge between high-energy and condensed-matter physics. While the presence of Dirac and noncentrosymmetric Weyl fermions is well established in many materials, the magnetic...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668437/ https://www.ncbi.nlm.nih.gov/pubmed/31366883 http://dx.doi.org/10.1038/s41467-019-11393-5 |
_version_ | 1783440216723292160 |
---|---|
author | Borisenko, Sergey Evtushinsky, Daniil Gibson, Quinn Yaresko, Alexander Koepernik, Klaus Kim, Timur Ali, Mazhar van den Brink, Jeroen Hoesch, Moritz Fedorov, Alexander Haubold, Erik Kushnirenko, Yevhen Soldatov, Ivan Schäfer, Rudolf Cava, Robert J. |
author_facet | Borisenko, Sergey Evtushinsky, Daniil Gibson, Quinn Yaresko, Alexander Koepernik, Klaus Kim, Timur Ali, Mazhar van den Brink, Jeroen Hoesch, Moritz Fedorov, Alexander Haubold, Erik Kushnirenko, Yevhen Soldatov, Ivan Schäfer, Rudolf Cava, Robert J. |
author_sort | Borisenko, Sergey |
collection | PubMed |
description | Spectroscopic detection of Dirac and Weyl fermions in real materials is vital for both, promising applications and fundamental bridge between high-energy and condensed-matter physics. While the presence of Dirac and noncentrosymmetric Weyl fermions is well established in many materials, the magnetic Weyl semimetals still escape direct experimental detection. In order to find a time-reversal symmetry breaking Weyl state we design two materials and present here experimental and theoretical evidence of realization of such a state in one of them, YbMnBi(2). We model the time-reversal symmetry breaking observed by magnetization and magneto-optical microscopy measurements by canted antiferromagnetism and find a number of Weyl points. Using angle-resolved photoemission, we directly observe two pairs of Weyl points connected by the Fermi arcs. Our results not only provide a fundamental link between the two areas of physics, but also demonstrate the practical way to design novel materials with exotic properties. |
format | Online Article Text |
id | pubmed-6668437 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-66684372019-08-01 Time-reversal symmetry breaking type-II Weyl state in YbMnBi(2) Borisenko, Sergey Evtushinsky, Daniil Gibson, Quinn Yaresko, Alexander Koepernik, Klaus Kim, Timur Ali, Mazhar van den Brink, Jeroen Hoesch, Moritz Fedorov, Alexander Haubold, Erik Kushnirenko, Yevhen Soldatov, Ivan Schäfer, Rudolf Cava, Robert J. Nat Commun Article Spectroscopic detection of Dirac and Weyl fermions in real materials is vital for both, promising applications and fundamental bridge between high-energy and condensed-matter physics. While the presence of Dirac and noncentrosymmetric Weyl fermions is well established in many materials, the magnetic Weyl semimetals still escape direct experimental detection. In order to find a time-reversal symmetry breaking Weyl state we design two materials and present here experimental and theoretical evidence of realization of such a state in one of them, YbMnBi(2). We model the time-reversal symmetry breaking observed by magnetization and magneto-optical microscopy measurements by canted antiferromagnetism and find a number of Weyl points. Using angle-resolved photoemission, we directly observe two pairs of Weyl points connected by the Fermi arcs. Our results not only provide a fundamental link between the two areas of physics, but also demonstrate the practical way to design novel materials with exotic properties. Nature Publishing Group UK 2019-07-31 /pmc/articles/PMC6668437/ /pubmed/31366883 http://dx.doi.org/10.1038/s41467-019-11393-5 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Borisenko, Sergey Evtushinsky, Daniil Gibson, Quinn Yaresko, Alexander Koepernik, Klaus Kim, Timur Ali, Mazhar van den Brink, Jeroen Hoesch, Moritz Fedorov, Alexander Haubold, Erik Kushnirenko, Yevhen Soldatov, Ivan Schäfer, Rudolf Cava, Robert J. Time-reversal symmetry breaking type-II Weyl state in YbMnBi(2) |
title | Time-reversal symmetry breaking type-II Weyl state in YbMnBi(2) |
title_full | Time-reversal symmetry breaking type-II Weyl state in YbMnBi(2) |
title_fullStr | Time-reversal symmetry breaking type-II Weyl state in YbMnBi(2) |
title_full_unstemmed | Time-reversal symmetry breaking type-II Weyl state in YbMnBi(2) |
title_short | Time-reversal symmetry breaking type-II Weyl state in YbMnBi(2) |
title_sort | time-reversal symmetry breaking type-ii weyl state in ybmnbi(2) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668437/ https://www.ncbi.nlm.nih.gov/pubmed/31366883 http://dx.doi.org/10.1038/s41467-019-11393-5 |
work_keys_str_mv | AT borisenkosergey timereversalsymmetrybreakingtypeiiweylstateinybmnbi2 AT evtushinskydaniil timereversalsymmetrybreakingtypeiiweylstateinybmnbi2 AT gibsonquinn timereversalsymmetrybreakingtypeiiweylstateinybmnbi2 AT yareskoalexander timereversalsymmetrybreakingtypeiiweylstateinybmnbi2 AT koepernikklaus timereversalsymmetrybreakingtypeiiweylstateinybmnbi2 AT kimtimur timereversalsymmetrybreakingtypeiiweylstateinybmnbi2 AT alimazhar timereversalsymmetrybreakingtypeiiweylstateinybmnbi2 AT vandenbrinkjeroen timereversalsymmetrybreakingtypeiiweylstateinybmnbi2 AT hoeschmoritz timereversalsymmetrybreakingtypeiiweylstateinybmnbi2 AT fedorovalexander timereversalsymmetrybreakingtypeiiweylstateinybmnbi2 AT haubolderik timereversalsymmetrybreakingtypeiiweylstateinybmnbi2 AT kushnirenkoyevhen timereversalsymmetrybreakingtypeiiweylstateinybmnbi2 AT soldatovivan timereversalsymmetrybreakingtypeiiweylstateinybmnbi2 AT schaferrudolf timereversalsymmetrybreakingtypeiiweylstateinybmnbi2 AT cavarobertj timereversalsymmetrybreakingtypeiiweylstateinybmnbi2 |