Cargando…

Time-reversal symmetry breaking type-II Weyl state in YbMnBi(2)

Spectroscopic detection of Dirac and Weyl fermions in real materials is vital for both, promising applications and fundamental bridge between high-energy and condensed-matter physics. While the presence of Dirac and noncentrosymmetric Weyl fermions is well established in many materials, the magnetic...

Descripción completa

Detalles Bibliográficos
Autores principales: Borisenko, Sergey, Evtushinsky, Daniil, Gibson, Quinn, Yaresko, Alexander, Koepernik, Klaus, Kim, Timur, Ali, Mazhar, van den Brink, Jeroen, Hoesch, Moritz, Fedorov, Alexander, Haubold, Erik, Kushnirenko, Yevhen, Soldatov, Ivan, Schäfer, Rudolf, Cava, Robert J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668437/
https://www.ncbi.nlm.nih.gov/pubmed/31366883
http://dx.doi.org/10.1038/s41467-019-11393-5
_version_ 1783440216723292160
author Borisenko, Sergey
Evtushinsky, Daniil
Gibson, Quinn
Yaresko, Alexander
Koepernik, Klaus
Kim, Timur
Ali, Mazhar
van den Brink, Jeroen
Hoesch, Moritz
Fedorov, Alexander
Haubold, Erik
Kushnirenko, Yevhen
Soldatov, Ivan
Schäfer, Rudolf
Cava, Robert J.
author_facet Borisenko, Sergey
Evtushinsky, Daniil
Gibson, Quinn
Yaresko, Alexander
Koepernik, Klaus
Kim, Timur
Ali, Mazhar
van den Brink, Jeroen
Hoesch, Moritz
Fedorov, Alexander
Haubold, Erik
Kushnirenko, Yevhen
Soldatov, Ivan
Schäfer, Rudolf
Cava, Robert J.
author_sort Borisenko, Sergey
collection PubMed
description Spectroscopic detection of Dirac and Weyl fermions in real materials is vital for both, promising applications and fundamental bridge between high-energy and condensed-matter physics. While the presence of Dirac and noncentrosymmetric Weyl fermions is well established in many materials, the magnetic Weyl semimetals still escape direct experimental detection. In order to find a time-reversal symmetry breaking Weyl state we design two materials and present here experimental and theoretical evidence of realization of such a state in one of them, YbMnBi(2). We model the time-reversal symmetry breaking observed by magnetization and magneto-optical microscopy measurements by canted antiferromagnetism and find a number of Weyl points. Using angle-resolved photoemission, we directly observe two pairs of Weyl points connected by the Fermi arcs. Our results not only provide a fundamental link between the two areas of physics, but also demonstrate the practical way to design novel materials with exotic properties.
format Online
Article
Text
id pubmed-6668437
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-66684372019-08-01 Time-reversal symmetry breaking type-II Weyl state in YbMnBi(2) Borisenko, Sergey Evtushinsky, Daniil Gibson, Quinn Yaresko, Alexander Koepernik, Klaus Kim, Timur Ali, Mazhar van den Brink, Jeroen Hoesch, Moritz Fedorov, Alexander Haubold, Erik Kushnirenko, Yevhen Soldatov, Ivan Schäfer, Rudolf Cava, Robert J. Nat Commun Article Spectroscopic detection of Dirac and Weyl fermions in real materials is vital for both, promising applications and fundamental bridge between high-energy and condensed-matter physics. While the presence of Dirac and noncentrosymmetric Weyl fermions is well established in many materials, the magnetic Weyl semimetals still escape direct experimental detection. In order to find a time-reversal symmetry breaking Weyl state we design two materials and present here experimental and theoretical evidence of realization of such a state in one of them, YbMnBi(2). We model the time-reversal symmetry breaking observed by magnetization and magneto-optical microscopy measurements by canted antiferromagnetism and find a number of Weyl points. Using angle-resolved photoemission, we directly observe two pairs of Weyl points connected by the Fermi arcs. Our results not only provide a fundamental link between the two areas of physics, but also demonstrate the practical way to design novel materials with exotic properties. Nature Publishing Group UK 2019-07-31 /pmc/articles/PMC6668437/ /pubmed/31366883 http://dx.doi.org/10.1038/s41467-019-11393-5 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Borisenko, Sergey
Evtushinsky, Daniil
Gibson, Quinn
Yaresko, Alexander
Koepernik, Klaus
Kim, Timur
Ali, Mazhar
van den Brink, Jeroen
Hoesch, Moritz
Fedorov, Alexander
Haubold, Erik
Kushnirenko, Yevhen
Soldatov, Ivan
Schäfer, Rudolf
Cava, Robert J.
Time-reversal symmetry breaking type-II Weyl state in YbMnBi(2)
title Time-reversal symmetry breaking type-II Weyl state in YbMnBi(2)
title_full Time-reversal symmetry breaking type-II Weyl state in YbMnBi(2)
title_fullStr Time-reversal symmetry breaking type-II Weyl state in YbMnBi(2)
title_full_unstemmed Time-reversal symmetry breaking type-II Weyl state in YbMnBi(2)
title_short Time-reversal symmetry breaking type-II Weyl state in YbMnBi(2)
title_sort time-reversal symmetry breaking type-ii weyl state in ybmnbi(2)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668437/
https://www.ncbi.nlm.nih.gov/pubmed/31366883
http://dx.doi.org/10.1038/s41467-019-11393-5
work_keys_str_mv AT borisenkosergey timereversalsymmetrybreakingtypeiiweylstateinybmnbi2
AT evtushinskydaniil timereversalsymmetrybreakingtypeiiweylstateinybmnbi2
AT gibsonquinn timereversalsymmetrybreakingtypeiiweylstateinybmnbi2
AT yareskoalexander timereversalsymmetrybreakingtypeiiweylstateinybmnbi2
AT koepernikklaus timereversalsymmetrybreakingtypeiiweylstateinybmnbi2
AT kimtimur timereversalsymmetrybreakingtypeiiweylstateinybmnbi2
AT alimazhar timereversalsymmetrybreakingtypeiiweylstateinybmnbi2
AT vandenbrinkjeroen timereversalsymmetrybreakingtypeiiweylstateinybmnbi2
AT hoeschmoritz timereversalsymmetrybreakingtypeiiweylstateinybmnbi2
AT fedorovalexander timereversalsymmetrybreakingtypeiiweylstateinybmnbi2
AT haubolderik timereversalsymmetrybreakingtypeiiweylstateinybmnbi2
AT kushnirenkoyevhen timereversalsymmetrybreakingtypeiiweylstateinybmnbi2
AT soldatovivan timereversalsymmetrybreakingtypeiiweylstateinybmnbi2
AT schaferrudolf timereversalsymmetrybreakingtypeiiweylstateinybmnbi2
AT cavarobertj timereversalsymmetrybreakingtypeiiweylstateinybmnbi2