Cargando…
Large-Scale Coarse-to-Fine Object Retrieval Ontology and Deep Local Multitask Learning
Object retrieval plays an increasingly important role in video surveillance, digital marketing, e-commerce, etc. It is facing challenges such as large-scale datasets, imbalanced data, viewpoint, cluster background, and fine-grained details (attributes). This paper has proposed a model to integrate o...
Autores principales: | Ly, Ngoc Q., Do, Tuong K., Nguyen, Binh X. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668564/ https://www.ncbi.nlm.nih.gov/pubmed/31396268 http://dx.doi.org/10.1155/2019/1483294 |
Ejemplares similares
-
Coarse-to-Fine Hand–Object Pose Estimation with Interaction-Aware Graph Convolutional Network
por: Zhang, Maomao, et al.
Publicado: (2021) -
Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition
por: Avilés-Cruz, Carlos, et al.
Publicado: (2019) -
Coarse-to-Fine Localization of Underwater Acoustic Communication Receivers
por: He, Pan, et al.
Publicado: (2022) -
Coarse-to-Fine Localization for Detecting Misalignment State of Angle Cocks
por: Lei, Hengda, et al.
Publicado: (2023) -
Embedding knowledge on ontology into the corpus by topic to improve the performance of deep learning methods in sentiment analysis
por: Nguyen, Duy Ngoc, et al.
Publicado: (2021)