Cargando…

Comparison of peripapillary and subfoveal choroidal thickness in normal versus primary open-angle glaucoma (POAG) subjects using spectral domain optical coherence tomography (SD-OCT) and swept source optical coherence tomography (SS-OCT)

OBJECTIVE: To elucidate the difference between choroidal thickness (CT) in primary open-angle glaucoma (POAG) and normal subjects and to compare the CT measured using spectral domain optical coherence tomography (SD-OCT) and swept source optical coherence tomography (SS-OCT). METHODS AND ANALYSIS: T...

Descripción completa

Detalles Bibliográficos
Autores principales: Komma, Swetha, Chhablani, Jay, Ali, Mohammed Hasnat, Garudadri, Chandra S, Senthil, Sirisha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668609/
https://www.ncbi.nlm.nih.gov/pubmed/31414052
http://dx.doi.org/10.1136/bmjophth-2018-000258
Descripción
Sumario:OBJECTIVE: To elucidate the difference between choroidal thickness (CT) in primary open-angle glaucoma (POAG) and normal subjects and to compare the CT measured using spectral domain optical coherence tomography (SD-OCT) and swept source optical coherence tomography (SS-OCT). METHODS AND ANALYSIS: This cross-sectional observational study included 25 eyes of 17 POAG subjects (cases) and 31 eyes of 20 normal subjects (controls). All the patients underwent complete ophthalmologic examination, enhanced depth imaging, SD-OCT and SS-OCT. In both controls and cases, the CT was measured in seven predetermined points in macular and peripapillary area and were compared. RESULTS: Choroid was significantly thicker on SS-OCT compared with SD-OCT in peripapillary and macular area in both cases and controls, except for inferior peripapillary in controls. The CT was not different from glaucoma and controls in peripapillary or macular area on SD-OCT (p>0.05), however, the CT was significantly thicker in glaucoma compared with controls in peripapillary area on SS-OCT (p<0.05) except inferior peripapillary (p=0.13). There was good intraobserver (±20 µm) and interobserver (±55 µm and ±45 µm) agreement on both SD-OCT and SS-OCT respectively. On SD-OCT, choroid was thinnest at the temporal peripapillary and thickest at subfoveal location in controls. In POAG, choroid was thinnest at inferior peripapillary region and thickest (500 µm) nasal to the fovea. On SS-OCT, choroid was thinnest at inferior peripapillary and thickest at the temporal peripapillary area in both cases and controls. CONCLUSION: CT measurements on SS-OCT were higher than the SD-OCT measurements possibly due to better delineation of the sclerochoroidal junction on SS-OCT. CT was significantly thicker in glaucoma subjects compared with controls in peripapillary area on SS-OCT but not in macular area.