Cargando…
Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss
Pericytes are positioned between brain capillary endothelial cells, astrocytes and neurons. They degenerate in multiple neurological disorders. However, their role in the pathogenesis of these disorders remains debatable. Here, we generated an inducible pericyte-specific Cre line and crossed pericyt...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668719/ https://www.ncbi.nlm.nih.gov/pubmed/31235908 http://dx.doi.org/10.1038/s41593-019-0434-z |
Sumario: | Pericytes are positioned between brain capillary endothelial cells, astrocytes and neurons. They degenerate in multiple neurological disorders. However, their role in the pathogenesis of these disorders remains debatable. Here, we generated an inducible pericyte-specific Cre line and crossed pericyte-specific Cre mice with iDTR mice carrying Cre-dependent human diphtheria toxin receptor (DTR). After pericyte ablation with diphtheria toxin, mice developed an acute blood-brain barrier (BBB) breakdown, severe loss of blood flow, and a rapid neuron loss associated with loss of pericyte-derived pleiotrophin (PTN), a neurotrophic growth factor. Intracerebroventricular PTN infusions prevented neuron loss in pericyte-ablated mice despite persistent circulatory changes. Silencing pericyte-derived Ptn rendered neurons vulnerable to ischemic and excitotoxic injury. Our data demonstrate a rapid neurodegeneration cascade linking pericyte loss to acute circulatory collapse and loss of PTN neurotrophic support. These findings could have implications for the pathogenesis and treatment of neurological disorders associated with pericyte loss and/or neurovascular dysfunction. |
---|