Cargando…
Combining patient visual timelines with deep learning to predict mortality
BACKGROUND: Deep learning algorithms have achieved human-equivalent performance in image recognition. However, the majority of clinical data within electronic health records is inherently in a non-image format. Therefore, creating visual representations of clinical data could facilitate using cuttin...
Autores principales: | Mayampurath, Anoop, Sanchez-Pinto, L. Nelson, Carey, Kyle A., Venable, Laura-Ruth, Churpek, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668841/ https://www.ncbi.nlm.nih.gov/pubmed/31365580 http://dx.doi.org/10.1371/journal.pone.0220640 |
Ejemplares similares
-
Predicting neurological outcomes after in-hospital cardiac arrests for patients with Coronavirus Disease 2019
por: Mayampurath, Anoop, et al.
Publicado: (2022) -
Association Between Critical Events in the PICU and Outcomes in Neighboring Patients
por: Arshad, Ahmed, et al.
Publicado: (2022) -
Using Machine Learning to Predict Likelihood and Cause of Readmission After Hospitalization for Chronic Obstructive Pulmonary Disease Exacerbation
por: Bonomo, Matthew, et al.
Publicado: (2022) -
Using photoplethysmography data to estimate heart rate variability and its association with organ dysfunction in pediatric oncology patients
por: Mayampurath, Anoop, et al.
Publicado: (2018) -
Multiple Organ Dysfunction Interactions in Critically Ill Children
por: Badke, Colleen M., et al.
Publicado: (2022)