Cargando…
Classification of radiographic lung pattern based on texture analysis and machine learning
This study evaluated the feasibility of using texture analysis and machine learning to distinguish radiographic lung patterns. A total of 1200 regions of interest (ROIs) including four specific lung patterns (normal, alveolar, bronchial, and unstructured interstitial) were obtained from 512 thoracic...
Autores principales: | Yoon, Youngmin, Hwang, Taesung, Choi, Hojung, Lee, Heechun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Veterinary Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669202/ https://www.ncbi.nlm.nih.gov/pubmed/31364328 http://dx.doi.org/10.4142/jvs.2019.20.e44 |
Ejemplares similares
-
Automated Mesiodens Classification System Using Deep Learning on Panoramic Radiographs of Children
por: Ahn, Younghyun, et al.
Publicado: (2021) -
Comparison of Deep Learning Models for Cervical Vertebral Maturation Stage Classification on Lateral Cephalometric Radiographs
por: Seo, Hyejun, et al.
Publicado: (2021) -
Effects of anti-glaucoma drugs on resistive index of the medial long posterior ciliary artery using color Doppler imaging in Beagle dogs
por: Choi, Hojung, et al.
Publicado: (2011) -
Texture analysis of muscle MRI: machine learning-based classifications in idiopathic inflammatory myopathies
por: Nagawa, Keita, et al.
Publicado: (2021) -
Acoustic Classification of Surface and Underwater Vessels in the Ocean Using Supervised Machine Learning
por: Choi, Jongkwon, et al.
Publicado: (2019)